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Abstract—3D shape reconstruction from images is an active
topic in computer vision. Shape-from-Shading is an important
approach which requires the surface properties and light source
position to infer the 3D shape. A L2 regularizer is typically used
to penalize the irradiance equation. In this article, anisotropic
diffusion (AD) is introduced as a regularizer to solve the image
irradiance equation. The method is then compared with L1 and
L2 regularization methods, where all of the three techniques are
formulated using gradient descent. Results shows that with AD,
edges can be better preserved. AD shows lower depth error and
higher correlation when compared with L1 and L2 regularization
methods.

Index Terms—Shape-from-Shading, near-light-source,
anisotropic diffusion, L2 regularization, L1 regularization

I. INTRODUCTION

3D shape reconstruction from images is a challenging
problem in the field of computer vision. There are several
techniques for shape reconstruction, such as stereo vision,
structured light, shape-from-X (X = Shading, texture, fo-
cus/defocus, motion). Shape-from-shading (SfS) is an impor-
tant approach when it comes to recover the three dimensional
shape of an object from a single image. In some imaging
applications [1], [2], only one shot of the scene may be
available. In such situations, SfS could be a preferable choice
for 3D reconstruction.

SfS was first discussed by Horn and Brooks [3], who
formulated a non-linear partial differential equation (PDE)
by relating intensity variation in the image to the 3D shape
of the objects. SfS consists of two steps. In the first step,
a reflection model is developed by reflectance properties of
the surface, position of the camera and light source. In the
second step, a numerical scheme is designed to minimize the
difference between image irradiance and reflection function,
the so-called image irradiance equation (IIE), which typically
involves solving a non-linear PDE.

Most of the SfS approaches assume that the surface follows
Lambertian reflection while solving the numerical scheme [4].
Roy and Tourin [5], the pioneers of viscosity based solution,
solve IIE as a Hamilton Jacobi PDE provided exact boundary
data. Several other schemes are also formulated based on
viscosity solution theory [6], [7]. Tankus et al. [8] derived the
IIE equation and obtained the approximate solution by first
locally recover the surface by paraboloids and then obtain a
global solution within a single scale factor. Queau et al. [9]
presented a solution built on augmented Lagrangian approach

Fig. 1: Perspective Shape-from-Shading model with Light
source at the camera projection center O. Camera coordinate
system (x, y, z) is centered at O. z-axis is parallel to optical
axis pointing towards image plane.

for solving PDE. Wu et al. [10] also formulated SfS as a
minimization problem but modeled the reflection function
with perspective projection and multiple light sources around
camera center.

Numerical schemes are mostly implemented with L2 regu-
larization to penalize the irradiance equation. With L2, sharp
edges in 3D models tend to be somewhat smoothened because
of linear diffusion. However, the effect of using different
regularizers in SfS has not yet been thoroughly investigated.

In this paper, a non-linear, space-variant technique, called
an-isotropic diffusion (AD) [11], is introduced as a smoothness
constraint to solve the IIE. The aim of AD is in our application
is to reduce the noise from the surface without smoothing
edges, lines or other details which are important to interpret
the surface. IIE is also solved with L1 and L2 regularization
methods and the results of all three methods are compared
with each other.

The remainder of this article is organized as follows. Section
II explains perspective SfS model along with different numer-
ical schemes. Results are compared and discussed in Section
III and Section IV concludes the article.
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II. POINT LIGHT SOURCE PERSPECTIVE SFS MODEL

In this section, a brief description of SfS under point lighting
and perspective projection is provided with light source at
camera center as shown in Fig. 1. Radiance emitted by the
surface point S can be computed according to Lambertian
cosine law and inverse square distance fall of law of point
light source [10],

R(x̃, ỹ, z, p, q) = Ioρ

(
n(x̃, ỹ, z, p, q) · l(x̃, ỹ, z)

r(x̃, ỹ, z)2

)
, (1)

where Io is the light intensity and ρ is the surface albedo.
p = ∂z

∂x̃ and q = ∂z
∂ỹ are the surface gradients. n denotes

the surface unit normal and l is a unit vector representing the
direction of the light ray incident at S. r2 is inverse square
distance fall-off law of isotropic point light. The light source
is considered at the camera center, but can easily be extended
to multiple point light source not necessarily at the center [10].

The surface normal n can be represented in terms of partial
derivatives of the depth z with respect to x and y [3]:

n =
[− ∂z

∂x ,−
∂z
∂y , 1]√

( ∂z∂x )
2 + ( ∂z∂y )

2 + 1
, (2)

where (x, y, z) are camera coordinates. Under perspective
projection we have,

x = x̃
z

F
y = ỹ

z

F
, (3)

where F is the focal length and (x̃, ỹ) are image coordinates,
and camera is pointing in the negative z-direction as depicted
in Fig. 1.

According to Horn and Brooks [3], the image irradiance
equation is,

R(x̃, ỹ, z, p, q) = I(x̃, ỹ). (4)

Equation (4) is solved to estimate z by minimizing the
difference between image irradiance I(x̃, ỹ) and reflectance
map R(x̃, ỹ, z, p, q) given in (4). Different from the previous
optimization method [10] only depth z is optimized. p and
q are updated by taking the gradient of updated z as both p
and q are derived from z. By updating them independently
one may loose its connection with z. The error E(z) can be
computed as,

argmin
z
E(z) = λei(z) + (1− λ)es(z), (5)

where ei is the irradiance error and es represents smoothness
constraint. λ is the weighting factor between ei and es.
ei(z) can be computed over the image domain (Ω ⊂ R) as,

ei(z) =

∫
Ω

(I(x̃, ỹ)−R(x̃, ỹ, z, p, q))2dΩ. (6)

es(z) is solved by all three methods (L2, L1, AD). It is
then combined with ei(z) according to Equation (5) which
is then solved using gradient descent. A small time step ∆t is
introduced to ensure stability with higher values of λ.

A. L2 Regularization

es(z) can be solved with L2 regularization method such as,

es(L2)(z) =

∫
Ω

| ∇z |2 dΩ. (7)

Equation (6) and (7) are solved and the results are incorporated
in Equation (5) which is then solved using gradient decent,

∂z

∂t
= ∇2z +

λ

1− λ
(I −R)

∂R

∂z
. (8)

B. L1 Regularization

With L1 regularization method es(z) becomes,

es(L1)(z) =

∫
Ω

| ∇z | dΩ. (9)

Combining the results of Equation (6) and (9) in Equation (5)
and then solving yields,

∂z

∂t
= ∇ ·

(
∇z

| ∇z |

)
+

λ

1− λ
(I −R)

∂R

∂z
. (10)

C. Anisotropic Diffusion

A 2× 2 structure tensor is derived from the gradient of the
depth z which is given as,

Si,j =
∂z

∂xi
∂z

∂yj
. (11)

Afterwards, corresponding eigenvalues (λ+, λ−) and eigen-
vectors (θ+, θ−) are derived similar to [12]. In terms of
eigenvalues, langrangian density ψ(λ+, λ−) can be written as
[13],

es(AD)(z) =

∫
Ω

ψ(λ+, λ−)dΩ. (12)

The corresponding Euler-Langrange equation of (5), after
putting the solution of Equations (6) and (12) in it, gives,

∂z

∂t
= ∇ · (D∇z) + λ

1− λ
(I −R)

∂R

∂z
, (13)

where D is the diffusion tensor which is computed as,

D =
∂ψ

∂λ+
θ+θ

T
+ +

∂ψ

∂λ−
θ−θ

T
−. (14)

For simplicity and linearizing the terms with diffusion tensor
to compute it once and for all, structure tensor in Equation
(11) is derived from the gray scale image µ(x̃, ỹ).

III. RESULTS & DISCUSSIONS

A. Ground Truth Models

The methods are tested on four different objects: Sphere,
Torus, Sphere inside a Torus (Sphus) and Pyramid, which are
modeled in Blender. These objects are used as a ground truth
when compared with recovered 3D shapes. Blender is mainly
chosen to construct a ground truth scenario by controlling
different parameters such as light intensity (Io), focal length
(F ) etc.

An environment is designed similar to Fig. (1). The camera
is placed at (0, 0, 0). F of the camera is set to 25mm. A point
light source is also placed at camera center and power (P ) is
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(a) Sphere (b) Torus (c) Sphus (d) Pyramid

Fig. 2: Rendered images from Blender

set to 200mW where Io = P/4π in Equation (1). A flat surface
is placed below the camera center at negative z-axis. The four
different objects are also placed on the flat surface (one model
at a time) such that the it is cutting the three shapes (sphere,
torus, sphus) from the center while the pyramid is placed on
top of flat surface. Material properties of all the models are
chosen to be Diffuse BSDF with a constant albedo ρ = 1.
Ground truth models are shown in Fig. (3).

B. Image Irradiance from Blender Images

200 × 200 size images are rendered for all the models.
Images are shown in Fig. (2). I(x̃, ỹ) falling on the camera
sensor is related to gray scale image µ(x̃, ỹ) via camera
response function r(·) [10],

I(x̃, ỹ) =
r−1[µ(x̃, ỹ)]

M(x̃, ỹ)
, (15)

where M(x̃, ỹ) is anisotropy of the light source. Point lights
are perfectly isotropic by defination and so M(x̃, ỹ) = 1.
Images are saved in Portable Network Graphics (PNG) file
format and therefore, image irradiance is just the gamma
correction γ = 2.2 of the gray scale image i.e.,

I(x̃, ỹ) = µγ(x̃, ỹ). (16)

I(x̃, ỹ) is also converted from pixel units to physical units
in order to have correspondence between I(x̃, ỹ) and R.
Conversion to physical units is given by,

Ip(x̃, ỹ) =
I(x̃, ỹ)−min I(x̃, ỹ)

max I(x̃, ỹ)−min I(x̃, ỹ)

×
(
Io cos θ1
r21

− Io cos θ2
r22

)
+
Io cos θ2
r22

,

(17)

where Ip(x̃, ỹ) represents the physical value of the image
irradiance and (θ1, r1) and (θ2, r2) decides the upper and
lower bound of Ip(x̃, ỹ). (θ1, θ2) are the angle between surface
normal and light ray at the maximum and minimum point
on the surface respectively. (r1, r2) are the distance from
the light source to the maximum and minimum point on the
surface respectively. These points are experimental in our case
and chosen in order to have the same scale between Ip and
reflection function R, which is computed in the first step.

C. 3D Reconstruction

A flat surface is given as an initial condition for all objects in
order to test the robustness of the algorithm. p and q of initial
z are computed by taking the gradient in x and y directions.

Initial reflectance map is then computed using equation (4).
Updated z values are calculated by solving equations (8), (10)
and (13) for L2, L1, AD respectively. p and q are updated as
the gradient of z. For L2 regularization, λ is kept to 0.9997.
The value of λ is empirical in our experiment. Recovered 3D
shape with L2 regularization are shown in Fig. (4). Although,
results look nice but L2 has smoothened those areas where
the plane is intersecting the shapes. This is also one of the
reason to compute the structure tensor in Equation (11) from
gray scale image µ(x̃, ỹ) instead of depth z for better edge
information.

Both L1 and AD are sensitive to the initial condition.
Therefore, the reconstructed surface from L2 regularization
is fed as an initial condition to both of these methods. λ is
then tuned a bit while the number of iterations are kept the
same for all three methods. Reconstructed surfaces with L1
and AD are shown in Fig. (5) and (6) respectively.

In order to evaluate the robustness of the different methods,
the reconstructed surfaces are compared with ground truth
by measuring correlation and depth error. These methods
are chosen to assess different features of the reconstructed
surfaces. Correlation is chosen because it evaluates the shape
of the reconstructed surface independent of scale and position.
Depth error (ed) is chosen because it is scale dependent and
it will correctly evaluate the geometric deformation of the
reconstructed shape. ed is given by,

ed =
1

Ω

∑ ∑
i,j∈Ω

∣∣∣∣D̂i,j −Di,j

Di,j

∣∣∣∣, (18)

where D is the ground truth and D̂ is recovered 3D shape.
Ω represents the region of the 3D model considered for error
estimation.

TABLE I shows that AD performs well with lower depth
error for most of the cases and higher correlation for all the
cases. AD also manages to preserve edges better than L2.
Although L1 preserves edges to some degree, it has also
flattened areas which are curved in the ground truth models.

SfS algorithms are mostly tested without the availability of
ground truth data and hence, it is very challenging to predict
the quality of 3D reconstruction. Irradiance error ei is therefore
compared with depth error ed for all four shapes. Fig. (7)
shows that both errors correlates well with each other. ei

Shape Method Depth Error Correlation

Sphere
L2 0.0171 0.9718
L1 0.0163 0.9854
AD 0.0155 0.9937

Torus
L2 0.0480 0.8694
L1 0.0491 0.8720
AD 0.0410 0.9098

Sphus
L2 0.0540 0.8292
L1 0.0593 0.8083
AD 0.0539 0.8729

Pyramid
L2 0.0532 0.5241
L1 0.0540 0.5201
AD 0.0536 0.6207

TABLE I: Comparison of L2, L1 and AD methods

3148

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on February 14,2023 at 20:11:49 UTC from IEEE Xplore.  Restrictions apply. 



(a) Sphere (b) Torus (c) Sphus (d) Pyramid

Fig. 3: Simple objects for ground truth

(a) Sphere (b) Torus (c) Sphus (d) Pyramid

Fig. 4: 3D shapes recovered with L2 regularization

(a) Sphere (b) Torus (c) Sphus (d) Pyramid

Fig. 5: 3D shapes recovered with L1 regularization

(a) Sphere (b) Torus (c) Sphus (d) Pyramid

Fig. 6: 3D shapes recovered with Anisotropic Diffusion

reduces with ed as number of iterations increases for all four
objects. This confirms that when SfS techniques is applied
in situations where no ground truth is available, ei can be
considered an indicator of the quality of 3D reconstruction.

IV. CONCLUSION

In this article, near light source perspective SfS method
with different regularizers is discussed to recover 3D shapes.
Given a reflection model, numerical schemes are formulated
with three different regularizers (L2, L1, AD). The resulting
shape for each scheme is then compared by measuring the
average depth error and correlation with respect to ground
truth models. Results shows that the shapes recovered with
AD has less error and preserve edges better than the other
two schemes. The irradiance error ei is also compared with
the depth error ed to confirm their consistency so that when
these methods will be applied in conditions where no ground
truth is available, irradiance error can be considered as an
indicator of the quality of 3D reconstruction.

(a) Sphere (b) Torus

(c) Sphus (d) Pyramid

Fig. 7: Irradiance VS Depth Error for different shapes.
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