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Abstract. We present a novel, computationally efficient, iterative, spa-
tial gamut mapping algorithm. The proposed algorithm offers a compro-
mise between the colorimetrically optimal gamut clipping and the most
successful spatial methods. This is achieved by the iterative nature of the
method. At iteration level zero, the result is identical to gamut clipping.
The more we iterate the more we approach an optimal, spatial, gamut
mapping result. Optimal is defined as a gamut mapping algorithm that
preserves the hue of the image colours as well as the spatial ratios at
all scales. Our results show that as few as five iterations are sufficient
to produce an output that is as good or better than that achieved in
previous, computationally more expensive, methods. Being able to im-
prove upon previous results using such low number of iterations allows
us to state that the proposed algorithm is O(N), N being the number of
pixels. Results based on a challenging small destination gamut supports
our claims that it is indeed efficient.

1 Introduction

To accurately define a colour three independent variables need to be fixed. In
a given three dimensional colour-space the colour gamut is the volume which
encloses all the colour values that can be reproduced by the reproduction device
or present in the image. Colour gamut mapping is the problem of representing
the colour values of an image in the space of a reproduction device: Typically, a
printer or a monitor. Furthermore, in the general case, when an image gamut is
larger than the destination gamut some image-information will be lost. We there-
fore redefine gamut mapping as: The problem of representing the colour values
of an image in the space of a reproduction device with minimum information
loss.

Unlike single colours, images are represented in a higher dimensional space
than three, i.e. knowledge of the exact colour values is not, on its own, sufficient
to reproduce an unknown image. In order to fully define an image, the spatial
location of each colour pixel needs to be fixed. Based on this, we define two
categories of gamut mapping algorithms: In the first, colours are mapped inde-
pendent of their spatial location [1]. In the second, the mapping is influenced by

A.-B. Salberg, J.Y. Hardeberg, and R. Jenssen (Eds.): SCIA 2009, LNCS 5575, pp. 109–118, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



110 A. Alsam and I. Farup

the location of each colour value [2,3,4,5]. The latter category is referred to as
spatial gamut mapping.

Eschbach [6] stated that: Although the accuracy of mapping a single colour is
well defined, the reproduction accuracy of images isn’t. To elucidate this claim,
with which we agree, we consider a single colour that is defined by its hue, satu-
ration and lightness. Assuming that such a colour is outside the target gamut, we
can modify its components independently. That is to say, if the colour is lighter
or more saturated than what can be achieved inside the reproduction gamut, we
shift its lightness and saturation to the nearest feasible values. Further, in most
cases it is possible to reproduce colours without shifting their hue.

Taking the spatial location of colours into account presents us with the chal-
lenge of defining the spatial components of a colour pixel and incorporating this
information into the gamut mapping algorithm. Generally speaking, we need to
define rules that would result in mapping two colours with identical hue, sat-
uration and lightness to two different locations depending on their location in
the image plane. The main challenge is, thus, defining the spatial location of
an image pixel in a manner that results in an improved gamut mapping. By
improved we mean that the appearance of the resultant, in gamut, image is vi-
sually preferred by a human observer. Further, from a practical point of view,
the new definition needs to result in an algorithm that is fast and does not result
in image artifacts.

It is well understood that the human visual system is more sensitive to spatial
ratios than absolute values [7]. This knowledge is at the heart of all spatial gamut
mapping algorithms. A definition of spatial gamut mapping is then: The problem
of representing the colour values of an image in the space of a reproduction device
while preserving the spatial ratios between different colour pixels. In an image
spatial ratios are the difference, given some difference metric, between a pixel
and its surround. This can be the difference between one pixel and its adjacent
neighbors or pixels far away from it. Thus, we face the problem that: Spatial
ratios are defined in different scales and dependent on the chosen difference
metric.

McCann suggested to preserve the spatial gradients at all scales while apply-
ing gamut mapping [8]. Meyer and Barth [9] suggested to compress the lightness
of the image using a low-pass filter in the Fourier domain. As a second step
the high-pass image information is added back to the gamut compressed im-
age. Many spatial gamut mapping algorithms have been based upon this basic
idea [2,10,11,12,4].

A completely different approach was taken by Nakauchi et al. [13]. They de-
fined gamut mapping as an optimization problem of finding the image that is
perceptually closest to the original and has all pixels inside the gamut. The
perceptual difference was calculated by applying band-pass filters to Fourier-
transformed CIELab images and then weighing them according to the human
contrast sensitivity function. Thus, the best gamut mapped image is the image
having contrast (according to their definition) as close as possible to the original.
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Kimmel et al. [3] presented a variational approach to spatial gamut mapping
where it was shown that the gamut mapping problem leads to a quadratic pro-
gramming formulation, which is guaranteed to have a unique solution if the
gamut of the target device is convex.

The algorithm presented in this paper adheres to our, previously, stated def-
inition of spatial gamut mapping in that we aim to preserve the spatial ratios
between pixels in the image. We start by calculating the gradients of the original
image in CIELab colour space. The image is then gamut mapped by projecting
the colour values to the nearest, in gamut, point along hue-constant lines. The
difference between the gradient of the gamut mapped image and that of the orig-
inal is then iteratively minimized with the constraint that the resultant colour is
a convex combination of its gamut mapped representation and the center of the
destination gamut. Imposing the convexity constraint ensures that the resultant
colour is inside the reproduction gamut and has the same hue as the original.
Further, if the convexity constraint is removed then the result of the gradient
minimization is the original image. The scale at which the gradient is preserved
is related to the number of iterations and the extent to which we can fit the
original gradients into the destination gamut.

The main contributions of this work are as follows: We first present a math-
ematically elegant formulation of the gamut mapping problem in colour space.
Our formulation can be extended to a higher dimensional space than three. Sec-
ondly, our algorithm offers a compromise between the colorimetrically optimal
gamut clipping and the most successful spatial methods. This latter aspect is
achieved by the iterative nature of the methods. At zero iteration level, the re-
sult is identical to gamut clipping. The more we iterate the more we approach
McCann’s definition of an optimal gamut mapping result. The calculations are
performed in the three-dimensional colour space, thus, the goodness of the hue
preservation is dependent not upon our formulation but the extent to which
the hue lines in the colour space are linear. Finally, our results show that as
few as five iterations are sufficient to produce an output that is similar or bet-
ter than previous methods. Being able to improve upon previous results using
such low number of iterations allows us to state that the proposed algorithm is:
Fast.

2 Spatial Gamut Mapping: A Mathematical Definition

Let’s say we have an original image with pixel values p(x, y) (bold face to in-
dicate vector) in CIELab or any similarly structured colour space. A gamut
clipped image can be obtained by leaving in-gamut colours untouched, and mov-
ing out-of-gamut colours along staight lines towards g, the center of the gamut
on the L axis until they hit the gamut surface. Let’s denote the gamut clipped
image pc(x, y). From the original image and the gamut clipped one, we can
define
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αc(x, y) =
||pc(x, y) − g||
||p(x, y) − g|| , (1)

where || · || denotes the L2 norm of the colour space. Since pc(x, y)−g is parallel
to p(x, y) − g, this means that the gamut clipped image can be obtained as a
linear convex combination of the original image and the gamut clipped one,

pc(x, y) = αc(x, y)p(x, y) + (1 − αc(x, y))g. (2)

Given that we want to perform the gamut mapping in this direction: This is
the least amount of gamut mapping we can do. If we want to impose some more
gamut mapping in addition to the clipping, e.g., in order to preserve details, this
can be obtained by multiplying αc(x, y) with some number αs(x, y) ∈ [0, 1] (s
for spatial). With this introduced, the final spatial gamut mapped image can be
written as the linear convex combination

ps(x, y) = αs(x, y)αc(x, y)p(x, y) + (1 − αs(x, y)αc(x, y))g. (3)

Now, we assume that the best spatially gamut mapped image is the one having
gradients as close as possible to the original image. This means that we want to
find

min
∫

||∇ps(x, y) −∇p(x, y)||2F dA subject to αs(x, y) ∈ [0, 1]. (4)

where || · ||F denotes the Frobenius norm on R
3×2.

In Equation (3), everything exept αs(x, y) can be determined in advance. Let’s
therefore rewrite ps(x, y) as

ps(x, y) = αs(x, y)αc(x, y)(p(x, y) − g) + g ≡ αs(x, y)d(x, y) + g, (5)

where d(x, y) = αc(p(x, y) − g) has been introduced. Then, since g is constant,

∇ps(x, y) = ∇(αs(x, y)d(x, y)), (6)

and the optimisition problem at hand reduces to finding

min
∫

||∇(αs(x, y)d(x, y)) −∇p(x, y)||2F dA subject to αs(x, y) ∈ [0, 1]. (7)

This corresponds to solving the Euler–Lagrange equation:

∇2(αs(x, y)d(x, y) − p(x, y)) = 0. (8)

Finally, in Figure (1) we present a graphical representation of the spatial
gamut problem. p(x, y) is the original colour at image pixel (x, y), this value
is clipped to the gamut boundary resulting in a new colour pc(x, y) which is
compressed based on the gradient information to a new value ps(x, y).
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Fig. 1. A representation of the spatial gamut mapping problem. p(x, y) is the original
colour at image pixel (x, y), this value is clipped to the gamut boundary resulting in
a new colour pc(x, y) which is compressed based on the gradient information to a new
value ps(x, y).

3 Numerical Implementation

In this section, we present a numerical implementation to solve the minimization
problem described in Equation (8) using finite difference. For each image pixel
p(x, y), we calculate forward-facing and backward-facing derivatives. That is:
[p(x, y)−p(x+1, y)], [p(x, y)−p(x−1, y)], [p(x, y)−p(x, y+1)], [p(x, y)−p(x, y−
1)]. Based on that, the discrete version of Equation (8) can be expressed as:

αs(x, y)d(x, y) − d(x + 1, y) + αs(x, y)d(x, y) − d(x − 1, y)
+αs(x, y)d(x, y) − d(x, y + 1) + αs(x, y)d(x, y) − d(x, y − 1)

= p(x, y) − p(x + 1, y) + p(x, y) − p(x − 1, y)
+p(x, y) − p(x, y + 1) + p(x, y) − p(x, y − 1) (9)

where αs(x, y) is a scalar. Note that in Equation (9) we assume that αs(x+1, y),
αs(x − 1, y), αs(x, y + 1), αs(x, y − 1) are equal to one. This simplifies the
calculation, but makes the convergence of the numerical scheme slightly slower.

We rearrange Equation (9) to get:

αs(x, y)d(x, y)
= [4 × p(x, y) − p(x + 1, y) − p(x − 1, y)

−p(x, y + 1) − p(x, y − 1)
+d(x + 1, y) + d(x − 1, y)

+d(x, y + 1) + d(x, y − 1)] × 1
4

(10)

To solve for αs(x, y), we use least squares. To do that we multiply both sides of
the equality by dT (x, y) where T denotes vector transpose operator.
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αs(x, y)dT (x, y)d(x, y)
= dT (x, y)[4 × p(x, y) − p(x + 1, y) − p(x − 1, y)

−p(x, y + 1) − p(x, y − 1)
+d(x + 1, y) + d(x − 1, y)

+d(x, y + 1) + d(x, y − 1)] × 1
4

(11)

where dT (x, y)d(x, y) is the vector dot product, i.e. a scalar. Finally, to solve for
αs(x, y) we divide both sides of the equality by dT (x, y)d(x, y), i.e.:

αs(x, y)
= dT (x, y)[4 × p(x, y) − p(x + 1, y) − p(x − 1, y)

−p(x, y + 1) − p(x, y − 1)
+d(x + 1, y) + d(x − 1, y)

+d(x, y + 1) + d(x, y − 1)] × 1
4
× 1

dT (x, y)d(x, y)
(12)

To insure that αs(x, y) has values in the range [0 1], we clip values greater
than one or less than zero to one, i.e. if αs(x, y) > 1 αs(x, y) = 1 and
if αs(x, y) < 0 αs(x, y) = 1, the last one to reset the calculation if the iterative
scheme overshoots the gamut compensation.

At each iteration level we update d(x, y), i.e.:

d(x, y)i+1 = αs(x, y)i × d(x, y)i (13)

The result of the optimization is a map, αs(x, y), that has values in the range
[0 1], where zero takes the value of the clipped pixel d(x, y) to the average of
the gamut and one results in no change.

Clearly, the description given in Equation (12) is an extension of the spatial
domain solution of a Poisson equation. It is an extension because we introduce
the weights αs(x, y) with the [0 1] constraint. We solve the optimization prob-
lem using Jacobi iteration, with homogenous Neumann boundary conditions to
ensure zero derivative at the image boundary.

4 Results

Figures 2 and 3 shows the result when gamut mapping two images. From the
αs maps shown on the right hand side of the figures, the inner workings of
the algorithm can be seen. At the first stages, only small details and edges are
corrected. Iterating further, the local changes are propagated to larger regions
in order to maintain the spatial ratios. Already at two iterations, the result
resembles closely those presented in [4], which is, according to Dugay et al. [14]
a state-of-the-art algorithm. For many of the images tried, an optimum seems to
be found around five iterations. Thus, the algorithm is very fast, the complexity
of each iteration being O(N) for an image with N pixels.
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Fig. 2. Original (top left) and gamut clipped (top right) image, resulting image (left
column) and αs (right column) for running the proposed algorithm with 2, 5, 10, and
50 iterations of the algorithm (top to bottom)
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Fig. 3. Original (top left) and gamut clipped (top right) image, resulting image (left
column) and αs (right column) for running the proposed algorithm with 2, 5, 10, and
50 iterations of the algorithm (top to bottom)
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As part of this work, we have experimented with 20 images which we mapped
to a small destination gamut. Our results shows that keeping the iteration level
below twenty results in improved gamut mapping with no visible artifacts. Using
a higher number of iterations results in the creation of halos at strong edges and
the desaturation of flat regions. A trade-off between these tendencies can be made
by keeping the number of iterations below twenty. Further, a larger destination
gamut would allow us to recover more lost information without artifacts. We
thus recommend that the number of iterations is calculated as a function of the
size of the destination gamut.

5 Conclusion

Using a variational approach, we have developed a spatial colour gamut map-
ping algorithm that performs, at least, as well as state-of-the-art algorithms. The
algorithm presented is, however, computationally very efficient and lends itself
to implementation as part of an imaging pipeline for commercial applications.
Unfortunately, it also shares some of the minor disadvantages of other spatial
gamut mapping algorithms: halos and desaturation of flat regions for particu-
larly difficult images. Currently, we working on a modification of the algorithm
that incorporates knowledge of the strength of the edge. We believe that this
modification will solve or at least reduce strongly these minor problems. This is,
however, left as future work.
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