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Abstract. We present a computationally efficient, artifact-free, spatial
gamut mapping algorithm. The proposed algorithm offers a compromise
between the colorimetrically optimal gamut clipping and an ideal spatial
gamut mapping. This is achieved by the iterative nature of the method:
At iteration level zero, the result is identical to gamut clipping. The more
we iterate the more we approach an optimal spatial gamut mapping re-
sult. Our results show that a low number of iterations, 20-30, is sufficient
to produce an output that is as good or better than that achieved in pre-
vious, computationally more expensive, methods. More importantly, we
introduce a new method to calculate the gradients of a vector valued im-
age by means of a projection operator which guarantees that the hue of
the gamut mapped colour vector is identical to the original. Furthermore,
the algorithm results in no visible halos in the gamut mapped image a
problem which is common in previous spatial methods. Finally, the pro-
posed algorithm is fast- Computational complexity is O(N), N being
the number of pixels. Results based on a challenging small destination
gamut supports our claims that it is indeed efficient.

1 Introduction

To accurately define a colour three independent variables need to be fixed. In
a given three dimensional colour space the colour gamut is the volume enclos-
ing all the colour values that can be reproduced by the reproduction device or
present in the image. Colour gamut mapping is the problem of representing the
colour values of an image within the gamut of a reproduction device, typically
a printer or a monitor. Furthermore, in the general case, when an image gamut
is larger than the destination gamut some visual image information will be lost.
We therefore redefine gamut mapping as the problem of representing the colour
values of an image within the gamut of a reproduction device with minimum
loss of visual information, i.e., as visually close as possible.

Unlike single colours, images are represented in a higher dimensional space
than three, i.e. knowledge of the exact colour values is not, on its own, suffi-
cient to reproduce an unknown image. In order to fully define an image, the
spatial context of each colour pixel needs to be fixed. Based on this, we define
two categories of gamut mapping algorithms. In the first, colours are mapped
independent of their spatial context [1]. In the second, the mapping is influenced
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by the local context of each colour value [2-5]. The latter category is referred to
as spatial colour gamut mapping.

Eschbach [6] stated that although the accuracy of mapping of a single colour
is well defined, the reproduction accuracy of images isn’t. To elucidate this claim,
with which we agree, we consider a single colour that is defined by its hue, satu-
ration and lightness. Assuming that such a colour is outside the target gamut, we
can modify its components independently. That is to say, if the colour is lighter
or more saturated than what can be achieved inside the reproduction gamut, we
shift its lightness and saturation to the nearest feasible values. Further, in most
cases it is possible to reproduce colours without shifting their hue.

Taking the spatial context of colours into account presents us with the chal-
lenge of defining the spatial components of a colour pixel and incorporating this
information into the gamut mapping algorithm. Generally speaking, we need to
define rules that would result in mapping two colours with identical hue, satu-
ration and lightness to two different magnitudes depending on their context in
the image. The main challenge is, thus, defining the spatial context of an image
pixel in a manner that results in an improved gamut mapping. By improved
we mean that the appearance of the resultant in-gamut image is closer to the
original as judged by a human observer. Further, from a practical point of view,
the new definition needs to result in an algorithm that is fast and does not result
in image artifacts.

It is well understood that the human visual system is more sensitive to spatial
ratios than to absolute luminance values [7]. This knowledge is at the heart of
all spatial gamut mapping algorithms. A rephrasing of spatial gamut mapping is
then the problem of representing the colour values of an image within the gamut
of a reproduction device while preserving the spatial ratios between different
colour pixels. In an image, spatial ratios are the difference, given some metric,
between a pixel and its surround. This can be the difference between one pixel
and its adjacent neighbors or pixels far away from it. Thus, we face the problem
that spatial ratios are defined in different scales and dependent on the chosen
difference metric.

McCann suggested to preserve the spatial gradients at all scales while apply-
ing gamut mapping [8]. Meyer and Barth [9] suggested to compress the lightness
of the image using a low-pass filter in the Fourier domain. As a second step
the high-pass image information is added back to the gamut compressed image.
Many spatial gamut mapping algorithms have been based upon this basic idea [2,
10-12, 4].

A completely different approach was taken by Nakauchi et al. [13]. They
defined gamut mapping as an optimization problem of finding the image that
is perceptually closest to the original and has all pixels inside the gamut. The
perceptual difference was calculated by applying band-pass filters to Fourier-
transformed CIELAB images and then weighing them according to the human
contrast sensitivity function. Thus, the best gamut mapped image is the image
having contrast (according to their definition) as close as possible to the origi-
nal. Kimmel et al. [3] presented a variational approach to spatial gamut mapping
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where it was shown that the gamut mapping problem leads to a quadratic pro-
gramming formulation, which is guaranteed to have a unique solution if the
gamut of the target device is convex. However, they did not apply their method
to colour images.

Finding an adequate description of the surface of the gamut, commonly de-
noted a gamut boundary descriptors (GBDs) is an important step in any colour
gamut mapping algorithm. One of the main challenges is the fact that gamut
surfaces are most often concave. Many methods for finding the GBD have been
proposed over the years. Recently, Bakke et al. [14] presented an evaluation of
the most common method, showing that the modified convex hull algorithm by
Balasubramanian and Dalal [15] is generally the most reliable one.

The algorithm presented in this paper adheres to our previously stated def-
inition of spatial gamut mapping in that we aim to preserve the spatial ratios
between pixels in the image while preserving hue. The task of preserving three di-
mensional gradients while maintaining the original hue values is challenging—the
correction of the image gradients in a three dimensional colour space results in
unavoidable change in the hue. This is true because adding a three-dimensional
gradient vector to the colour triplet results in a modified vector that isn’t nec-
essarily parallel to the original.

The first contribution of this paper is, thus, to derive a new n-dimensional
gradient operator that is, mathematically, guaranteed to results in gradient vec-
tors that are parallel to the original colour. In the literature, there are a number
of gradient operators that provide estimations of the three dimensional colour-
image-gradients. As an example the first and second eigenvalues of the tensor
matrix are used to define gradients. From a spatial gamut mapping point of view,
these operators share two drawbacks: The first is that the gradient vector is not
in the direction of the original colour while the second is that operators result
in the absolute value of the gradient without its orientation, i.e. the gradient is
defined along a line not a vector. The operator derived in this paper remedies
both these problems. We define the difference between two colour vectors as the
norm of the first minus the norm of orthogonally projected component of the
second onto the first. In so doing we arrive at an oriented gradient that is in the
direction of the first vector.

The second contribution of this paper is the use of a new computationally
efficient approach to restrict the gamut of the spatially mapped image to be
within the destination gamut. This is achieved by observing that the resultant
image pixels are a convex combination of the colour values that are obtained by
clipping the gamut to the gamut boundaries and the neutral gray. Thus we start
by calculating the gradients of the original image in the CIELab colour space.
The image is then gamut mapped by projecting the colour values to the nearest,
in gamut, point along hue-constant lines. The difference between the gradients of
the gamut mapped image and that of the original is then iteratively minimized
with the constraint that the norm of resultant colour is no greater than that of
the gamut clipped vector. The scale at which the gradient is preserved is related
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to the number of iterations and the extent to which we can fit the original
gradients into the destination gamut.

The third contribution relates to halos which are a main drawback in pre-
vious spatial gamut mappings techniques. We observe that halos are visible in
the resultant gamut mapped images at strong lightness or chromatic edges. Fur-
thermore, those edges are generally visible in the gamut clipped image. That is
to say that halos are the result of over enhancing visible edges. We avoid this
problem by using anisotropic diffusion [16] where the gradients of the gamut
mapped image are improved based on their strength. In other words, diffusion is
encouraged within regions and prohibited across strong edges thus avoiding the
introduction of halos.

Finally, our results show that as few as ten to thirty iterations are sufficient
to produce an output that is similar or better than previous methods. Being able
to improve upon previous results using such low number of iterations allows us
to state that the proposed algorithm is fast.

2 Spatial Gamut Mapping: A Mathematical Definition

Let’s say we have an original image with pixel values p(z, y) (bold face to indicate
vector) in CIELab or any similarly structured colour space. A gamut clipped
image can be obtained by leaving in-gamut colours untouched, and moving out-
of-gamut colours along straight lines towards g, the center of the gamut, G, on
the L axis until they hit the gamut surface. Let’s denote the gamut clipped image
pe(z,y). In a previous papers [17], we showed that spatial gamut mapping can
be achieved by minimising

min/ ||[Vps — Vp|[*dA subject to ps € G. (1)

where p; is the spatially gamut mapped image that we are solving for. The
numerical solution to this problem was found by solving the corresponding Euler—
Lagrange equation,

VZ(ps —p) =0 (2)
using a finite difference method with Jacobi iteration, subject to the constraint
that the resultant colour vectors are inside the gamut boundaries defined by the
gamut clipper image.

One of the problems with this approach was that there was a tendency to-
wards the creation of halos near strong edges. In Reference [18], we therefore
proposed to exchange the simple diffusion equation with the anisotropic diffu-
sion equation proposed by Perona and Malik [16]:

V- (DV(ps —p)) =0. 3)

The diffusion constant was chosen in accordance with Perona and Malik: D =
1/(1 4 |Vp/k|?), k being a regularisation parameter, which resulted in the fol-

lowing equation:
V(ps - p) )
Vi|l———=———= | =0. 4

(T wan W
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In order to simplify the problem further, we solved this equation for the grayscale
versions of the original, p, and gamut mapped images, ps only. The final colour
gamut mapped image was assumed to be a convex linear combination of the
original image and the neutral gray color at any pixel position. The main sacrifice
by this approach was that we were not able to recover details that were lost in the
conversion between the colour gamut mapped image and its grayscale version.

Here, we propose a new way to deal with Equation (4). Instead of working
only on the grayscale images, as in Reference [18], we perform the gamut mapping
directly in the full three-dimensional colour space. However, in order to ensure
hue constancy during the mapping process, we force the changes to occur on
lines of constant hue by projecting the gradients of the original image onto the
vectors p — g, i.e. instead of using the gradient of the original image directly, we
substitute it with

(Vp)) =e(p)(e(p) - VP), (5)

where e(p) = (p — g)/|p — g/ is a unit vector in a direction of constant hue.
Thus, the equation we are seeking to solve for p is

v. ( Vps ) —v. ( (VP)H ) 7 (6)
T 1(Vp)y /nl? 15 1(Vp) /w2

subject to ps € G. This equation is discretised using the finite difference method
with homogeneous boundary conditions, and iterated using the steepest decent
method. In order to avoid loss of saturation, we imposed a constraint on how
much the out-of-gamut colours can be compressed. This constraint is described
by the parameter s (suggesting “saturation”). A value of, e.g., s = 0.7 constrains
the resulting colour of an out-of-gamut pixel to be outside the inner 70% of the
target gamut as measured along the line from g to p..

3 Results

Figure 1 shows two original colour images and the results of pure gamut clipping.
Clearly, many details are rendered invisible in the clipped images. For the first
image, this loss of detail is evident in the left side of the face, the hair and the
face paint.

Figures 2 and 3 show the results of running our algorithm for various number
of iterations and for different values of the saturation parameter for the two
images, respectively. The saturation parameters are s = 0.65,0.75, s = 0.85 are
in the three columns from left to right column, and the number of iterations are
N =5,10,20,50,100, 500 from top to bottom. We observe that small details and
edges are corrected to match the original better. With more iterations, the local
changes are propagated to larger regions in order to maintain the spatial ratios,
however, already at ten iterations, the result resemble that presented in [4], which
is, according to Dugay et al. [19] a state-of-the-art algorithm. For many of the
images tried, an optimum seems to be found around ten to twenty iterations.
Thus, the algorithm is very fast, the complexity of each iteration being O(N)
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Fig. 1. The original colour images (left) and the gamut clipped images (right).

for an image with N pixels. At the bottom of Figures 2 and 3, the result with as
many as 400 iterations are shown. Here, we notice that the details are preserved
in a fashion that indicates the power of spatial gamut mapping were we observe
that the details are as good as those in the original image.

We further notice that improving the details have not resulted in halos around
strong edges. This is due to the use of anisotropic diffusion where we limit
diffusion over strong edges. Finally, we notice that, with the introduction of the
s parameter, the de-saturation of some colours resulting from previous versions
of the algorithm [17,18,20] is much more controllable.

As part of this work, we have experimented with 20 images which we mapped
to a small destination gamut. Our results shows that the proposed algorithm
results in improvement in the visualisation of all the images.

4 Conclusion

In this paper, we presented a spatial gamut mapping algorithm that is derived
to minimise the difference, in local contrast, between an original image and its
in-gamut counterpart. The first contribution of this paper, is the introduction of
a gradient operator that results in three dimensional gradients that are in the
direction of the original colour. The motivation behind the use of this operator
is to maintain the hue of the original colour (subject to the linearity of the hue
lines in the colour space). By employing anisotropic diffusion and a constraint
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Fig. 2. The first image from Figure 1 gamut mapped by the proposed algorithm for
the three values s = 0.65,0.75, s = 0.85 in the three columns from left to right, and for
the number of iterations N = 5,10, 20, 50, 100, 500 from top to bottom.
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Fig. 3. The second image from Figure 1 gamut mapped by the proposed algorithm for
the three values s = 0.65,0.75, s = 0.85 in the three columns from left to right, and for
the number of iterations N = 5,10, 20, 50, 100, 500 from top to bottom.
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on the extent to which gradient correction is allowed to result in de-saturation,
we were able to achieve results that improve on the state of art algorithm- our
results are free from halos, without loss of saturation. Finally, this improvement
is achieved to a small computational cost which makes this algorithm suited for
practical implementation as part of a colour reproduction pipeline.
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