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Abstract

In the paper “Colour-to-Greyscale Image Conversion by
Linear Anisotropic Diffusion of Perceptual Colour Metrics”, Farup
et al. presented an algorithm to convert colour images to greyscale.
The algorithm produces greyscale reproductions that preserve
detail derived from local colour differences in the original colour
image. Such detail is extracted by using linear anisotropic diffusion
to build a greyscale reproduction from a gradient of the original
image that is in turn calculated using Riemannised colour metrics.
The purpose of the current paper is to re-evaluate one of the
psychometric experiments for these two methods (CIELAB L and
anisotropic AEqg) by using a flipping method to compare their
resulting images instead of the side by side method used in the
original evaluation. In addition to testing the two selected
algorithms, a third greyscale reproduction was manually created
(colour graded) using a colour correction software commonly used
to process motion pictures. Results of the psychometric experiment
found that when comparing images using the flipping method, there
was a statistically significant difference between the anisotropic
AEgg and CIELAB L" conversions that favored the anisotropic
method. The comparison between AE g9 conversion and the manually

colour graded image also showed a statistically significant
difference between them, in this case favoring the colour graded
version.

Introduction

A common process in image processing and reproduction is the
conversion of a colour image to greyscale. Both global and local
approaches (or a combination) are normally used to perform such
conversions. Since the process itself involves reducing the number
of channels in the image, loss of information and image detail are
common side effects.

To improve the quality of the resulting greyscale images, many
methods have been researched. The most common method is to use
the lightness channel (L) of the image represented in the CIELAB
colour space. Being a global method, it involves generating one
lightness channel that is a weighted sum of the RGB channels that
ignores local variations in the image [1].

Another approach is to use what is called a spatial method that
takes into account the variation within local areas of the image. We
can understand this variation as a gradient (or rate of change) and
measure it. In our case this is done using a Riemannian metric
obtained from a colour difference formula calculated in a curved
space [2] that is better suited to measure such perceptually uniform
distances [3].

In the original paper by Farup et al. [1], upon which this work
is based, several metrics were converted to this Riemannian space
and then used to create a tensor for the colour image from its colour
difference values. Eigenvalues and vectors from this colour image
tensor were then used to construct a gradient, and from this gradient
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the final greyscale reproduction is constructed using both isotropic
and linear anisotropic diffusion.

In addition to the conversions obtained using several colour
metrics (AE,,, AEuy, AEyy, AEE, AEgg (4 versions), and hyperbolic
AEgg. hyp) the proposed algorithm was also compared with the

greyscale conversion methods proposed by Smith et al. [4] and Du
et al. [5]. More details are found in the “Background” section or in
Farup etal. [1].

In this re-evaluation we focus on the performance of the
algorithm in the preference psychometric experiment done as part
of the original paper. In that experiment, none of the methods tested
performed significantly better than the CIELAB L* conversion
method. Additionally, given the performance of L* and AE99 in the
original evaluation, and to take advantage of the experience of one
of the author of the present paper as a colourist, it was decided to
test both conversions against another global method: a manual
greyscale reproduction.

This paper is organized as follows: first we present relevant
background. Then we introduce the methods used. Results and
discussion are presented before we conclude and propose future
work.

Background
As part of the larger study carried out by Farup et al. [1], a

preliminary study was included where the proposed algorithm was

run on 30 images with two gradient creation alternatives, using both
isotropic and anisotropic diffusion. In total nine different colour

difference formulas were tested: AEab, AEuv, AE00, AEE, AE99 (4

versions), and hyperbolic AE99¢c,hyp. As a result from this

evaluation, the following was decided for the main experiment by

Farup et al. [1]:

e  Only one gradient creation method was selected.

e  Anisotropic diffusion was selected over its isotropic
counterpart, because of its better performance. Anisotropic
diffusion was without the halo artefacts usually produced by

e isotropic diffusion.

e  Euclidean AE99¢ was chosen over its hyperbolic alternative

e AE99c,hyp, because no visible or measurable difference be-
tween them could be found and therefore the original version
was selected.

e  Euclidean AE99 [6] was the found to be the more accurate
metric to use according to a small psychometric experiment
with nine images designed to select the best parameters for
the proposed algorithm.

Following the preliminary study, a test data set was created
with the greyscale reproductions from five algorithms chosen: AEgg

(overall more accurate), AE, (regarded as the best colour difference

metric), CIELAB L* (the most commonly used method), the method
proposed by Smith et. al. (evaluated as most accurate in their study)
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[4], and the method proposed by Du et. al. (also evaluated as
superior in another psychometric experiment) [5]. These five
algorithms were applied on 10 images: five from the CSIQ [7]
data set and five from the Kodak data set. Two psychometric
evaluations were performed on this test data set using the
QuickEval [8] platform:

e  Accuracy experiment: a paired comparison under con- trolled
conditions in which observers were asked to “select the most
accurate reproduction of the colour image” [1].

e  Preference experiment: an online uncontrolled paired
comparison where observers were asked to “select the image
you prefer” [1].

It was found that linear anisotropic diffusion performed better
than or equal to all the tested colour-to-greyscale conversion
algorithms both in terms of preference and accuracy. Surprisingly,
no significant difference was found between the sophisticated
algorithms and a simple L* luminance map.

Methods

In this paper we re-evaluate the preference experiment un- der
a controlled environment (as opposed to an online experiment) using
only the CIELAB L* and anisotropic Euclidean AEyg reproductions
for the pair comparison. Additionally, using the same setup and
methodology we will evaluate both CIELAB L* and AEgg against
our manually created reproduction.

Colour-to-Grey Algorithms

Main Colour-to-Greyscale Algorithm

Since the scope of this paper did not involve the mathematical
analysis or computational implementation of the algorithm itself, we
refer to the original paper [1] for the details on the concepts dealt
with when using linear anisotropic diffusion together with
Riemannised colour metric differences for the creation of the
greyscale reproductions.

Manual Colour-to-Greyscale Reproduction

Given the opportunity to conduct a controlled psychometric
experiment and the previous experience of one of the authors of the
present paper as a film colourist, it was agreed to test a third method
against the lightness channel of CIELAB and the AEgg conversion.

The images in the data set were manually converted to
greyscale using Blackmagic Design Davinci Resolve colour
correction software. The conversion was approached as a global
operation (not optimized for local detail preservation) by using a
tool provided by the software called channel mixer that allows for
the combination of weighted RGB channels into a final greyscale
image.

The main goal during the creation of this third reproduction
was to obtain a pleasing image in which the colours are represented
by greyscale values perceived as their natural fit. For ex- ample skin
tone was mapped to 50% lightness approximately, as such is the
value for skin that is commonly used in photography. This approach
is somewhat similar to CIELAB, as long as the image has been
correctly exposed according to standard photo- graphic conventions.

Psychometric Preference Experiments

Following the setup as used in the paper by Farup et al. [1], the
re-evaluation experiment took place in a dark surround, using an
Eizo ColorEdge CG246W monitor which was hardware calibrated
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to sRGB (80 cd/m2 and 6500 K) using an xRite il pro
spectrophotometer. The viewing distance of the experiment was set
to approximately 50 cm. All observers had normal colour vision and
normal or corrected to normal visual acuity.

Images were shown one at a time, giving the user the control to
flip between the pair of greyscale reproductions being com- pared
(as shown on the right side of Figure 1). This is the main difference
with the original experiment, which instead presented the
reproductions side by side (as shown on the left side of Figure 1).
Since the main benefit of the proposed algorithm is to preserve detail
from the colour difference information in the original images, this
setup allowed for an easier way to spot the differences between
reproductions for the observer (see Figure 1). The experimental
setup is similar to that used in [9, 10], where observers could flip
between the images.

A B A

Figure 1. Experimental setup. On the left a traditional pair comparison setup
with two reproductions (A and B) next to each other, which was used in the
work by Farup et al. [1]. On the right the setup used in this work, where the
images are placed on “top” of each other at the same location and the
observers could flip between them.

The same 10 images (Figure 2) as used by Farup et al. [1] was
included in the experiment. Five of these images are from the CSIQ
dataset [7] and five images from the Kodak data set. The images
were chosen following the recommendations from Field [11] in
order to ensure a variety of image characteristics. For an overview
of all the reproductions used see Figures 6 and 7.

CIELAB L vs. Anisotropic Diffusion of AE99

The experiment was done by 15 observers: 7 male and 8
female. In this group there were 9 colour science students, 3
interaction design students, 2 post doctoral researchers and 1 staff
professor of computer science.

CIELAB L #vs. Manual Reproduction

This experiment was done by 14 observers: 6 male and 8
female. This group included 8 colour science students, 3 inter-
action design students, 2 post doctoral researchers and 1 staff
professor of computer science.

Anisotropic Diffusion of AE99 vs. Manual Reproduction
This experiment was done by 11 observers: 10 male and 1

female. This group included 1 colour science student, 8 post

doctoral researchers, and 2 staff professors of computer science.

Data Analysis
Using both Microsoft Excel and the Matlab toolkit Colour
Engineering Toolbox [12] for cross validation, Z-scores with 95%
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Figure 2. Colour images used in the re-evaluation of the psychometric experiment.

percent confidence interval were calculated from raw pair
comparison data [13]. To follow the same procedure as the original
paper [1], a binomial test was also done for every experiment.

Results and Discussion

In the psychometric experiments (see Figures 3 and 4), both the
proposed algorithm (anisotropic Euclidean AE99) and our own
greyscale reproduction performed significantly better than CIELAB
L when all images are considered.
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Figure 3. Z-scores with 95% confidence interval for the for the L+ and the
AE99 re-evaluated preference experiment.

For the comparison between the anisotropic Euclidean AE99)
and manual method, the results (Figure 5) shows that the manual
method is performing significantly better when all images are
considered.

In line with the statistical evaluation done in the original paper,
we also calculated the p-values from a binomial test for the three
pair comparisons. In all cases we obtained as result p < 104, which
shows that the evaluated methods performed significantly better
than their pairs in the respective tests.

In the case of the anisotropic Euclidean AE99 reproductions,
results show that when comparing images using the flip method, the
advantages of the algorithm are visible to the observers and this thus
there is a higher preference towards it (Figure 4). This makes sense,
since the local details that are at times not perceived when
comparing images side to side, are more noticeable in our
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experimental setup where the observers can freely flip between the
images.
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Figure 4. Z-scores with 95% confidence interval for the L% and manual
reproduction preference experiment.
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Figure 5. Z-scores with 95% confidence interval for the AEgg and manual
reproduction preference experiment.

As for the manual reproduction, which did not use any spatial
optimization to retain detail or local contrast, experiments showed
that it performed significantly better than both algorithmic
reproductions. These results show that observers not only rate more
detailed images better, but also images that are pleasing. The main
enhancement done to the images was to increase their contrast while
retaining a pleasing photographic tonal reproduction, which also
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gives the perceived appearance of a sharper image. Retouching
images in such way is a skill that colourists develop with practice,
and that allows them to “improve” the images captured by
cinematographers (a craft known as colour grading).

Conclusion

When improving the quality of greyscale reproductions,
observers (more so those who are not specialized in working with
images) can overlook the enhancements depending on the way in
which the results are shown to them. The psychometric evaluation
method used to evaluate the results of spatial algorithms is an
important factor when testing the performance of such an algorithm.
In this paper we evaluated colour-to-greyscale conversion
algorithms in a subjective experiment where the observers could
“flip” between the images.

While some algorithms go to great lengths to improve image
quality, simple methods such as luminance maps can also produce
better results. Such is also the case for the conversions done by a
visual artist, whom can instinctively improve the perceptual quality
of an image by judging the results “by eye”.
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Figure 6. Greyscale reproductions for CSIQ data set, from left to right: manual reproduction, CIELAB L, AE99.
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Figure 7. Greyscale reproductions for Kodak dataset, from left to right: manual reproduction, CIELAB Lx, AE99
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