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Abstract
Panoramas are formed by stitching together two or more im-

ages of a scene viewed from different positions. Part of the so-
lution to this stitching problem is ‘solving for the homography’:
where the detail in one image is geometrically warped so it ap-
pears in the coordinate frame of another. In this paper, we view
the spectral loci for a given camera and the human visual system
(i.e. their respective chromaticity diagrams) as two pictures of the
same ‘scene’ and warp one to the other by finding the best homog-
raphy. When this geometric distortion renders the two loci to be
identical then there exists a unique colour filter (that falls grace-
fully from the derivation without further calculation) which makes
the camera colorimetric (the camera+filter measures RGBs that
are exactly linearly related to XYZs). When the best homography
is not exact the filter derived by this method still makes cameras
approximately colorimetric. Experiments validate our method.

Introduction
One of the central tenets of colour science is that if the tris-

timulus response – the three numbers found by integrating a spec-
trum with the three XYZ colour-matching functions [1] (here and
throughout this paper we use the 1931 standard observer curves,
sometimes denoted CMFs) – for two different spectra are the same
then they will also look the same to the average human observer.
When two spectra match, they are called metamers. For various
reasons – not least the limited number of dyes that can be de-
posited on imaging sensors – the spectral sensitivities of the cam-
eras are not the same as or linearly transformable to the human
vision colour-matching functions. The import of this is that there
exist spectral pairs that look identical to the camera and different
to the eye and vice versa. Consequently, no mathematical means
can exist to discount this metamer mismatching exactly [2] though
some non-linear functions can mitigate the problem e.g. [3, 4] (i.e.
they deliver lower colour error than a linear transform).

Of course, many of the colours we see on our devices are
perfectly good reproductions of our colour percepts. Yet, there
are always colours that are incorrectly reproduced. Moreover, in
the domains of industrial inspection and medical applications the
differences between the desired XYZs and that which can be ap-
proximated measured by a camera are significant, e.g. [5, 6]. One
solution to the metamerism problem is to make more than 3 mea-
surements (e.g. use a 6 sensor camera [7]) or, indeed, to capture
the spectral radiance at each point in the scene [8]. In the latter
scenario, the correct tristimulus response is easily found by inte-
grating with the XYZ CMFs. Unfortunately, spectral imaging is
often not a viable solution to the metamerism problem. Spectral
imagers are expensive, are sensitive measurement devices, require
long integration times and are, generally, unsuitable for use in the
field.

Recently, it has been shown that is possible to design a spe-

cial coloured filter – with a particular transmittance profile – that,
when placed in front of a typical RGB colour camera makes that
camera almost colorimetric, i.e. the filtered RGB camera mea-
surements are almost within a linear 3×3 matrix correction from
corresponding XYZ tristimulus values [9, 10]. Figure 1 illus-
trates how the method works. In, respectively, panels (a) and (b)
a Canon EOS 50D camera and its spectral sensitivities [11] are
shown. In panel (d) we plot the XYZ colour-matching functions
[1] and in panel (e) the simple least-squares fit of the camera’s
sensitivities to best match these CMFs. If the Canon 50D camera
was colorimetric, then the fitted and actual XYZ curves would be
the same. The optimal derived filter (solved for according to [9])
for this camera is shown in panel (c)). This filter is most trans-
missive in the long and short wavelengths. As a visualization, a
colored filter is shown to be in front of the 50D camera in panel
(a)). Finally, in panel (f) we show the least-squares fit of the cam-
era sensitivities multiplied by this filter to the XYZ curves. These
new fitted filter curves are almost the same as the XYZ colour-
matching curves, indicating the filter camera is almost colorimet-
ric.

Figure 1: Respectively (a) through (d) show a Canon 50D camera,
its spectral sensitivities, a transmissive colour filter and the XYZ
CMFs. Panel (e) shows the best fit of the Canon sensitivities (Mt

1)
to the XYZ CMFs. In panel (f) the filtered Canon sensitivities are
fitted to the XYZs (Mt

2).

When an optimal correction filter is deployed, the colour er-
rors between actual and estimated XYZ tristimulus values can in
principle be reduced by 2/3 or more [10] compared to the colour
correction without a filter. Placing a coloured filter in front of the
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light source (rather than the camera) will, for many capture sce-
narios, result in the same filtered RGB measurements. In [12],
a multispectral illuminator is used to simulate the optimal filter
idea and significant reductions in colour-measurement errors are
obtained, validating the filtering idea.

One of the disadvantages of the prior art filter design work
is that the associated optimization is not closed form and the best,
iteratively, derived filter can vary depending on an initialisation
condition for the optimization. Consequently, in [10], thousands
of initial conditions – starting points for the filter optimization
– were required to find the best filter overall. Another poten-
tial weakness of the prior-art is that colour error in measured in
tristimulus space rather than in more perceptually uniform colour
spaces (e.g. CIELAB and CIELUV [1]).

In this paper, we present a surprising result. We show that
to find the best filter to make a camera colorimetric we need to
warp – i.e. non-linearly spatially transform – the chromaticity di-
agram of the camera to best match the corresponding xy or u′v′

chromaticity diagram. The image warp is exactly a homography,
which is a non-linear transform more commonly found in geomet-
ric computer vision where images are geometrically mapped and
then stitched together (e.g. in panorama formation [13] or epipo-
lar geometry in stereo vision [14]). Once the globally optimal
warp is found (here there is no need for careful initialisation), the
best colorimetric filter – which we call the geometric warp filter
– falls out of the optimisation without further optimization.

In experiments, we, indirectly, find the filter that makes a
wide variety of cameras approximately colorimetric by geomet-
rically warping their respective chromaticity diagrams. We then
evaluate how well these geometric warp filters make the camera
colorimetric, in general (i.e. for a range of typical lights and sur-
faces and not only the colours on the spectral locus). A hybrid
method is also considered, where the geometric warp filter is re-
fined by the prior art optimisation [9].

Background
Geometric image warping: In geometric image processing, one
image is often warped in order to match another. Figure 1, illus-
trates this idea with two pictures taken – by one of the authors –
from different positions of the same scene. Panel (a) shows a pic-
ture of a lake with vegetation in the background. From a different
position, we see the same scene in panel (b). Note there is content
in common and content that differs, and as such, if we can merge
the two images we might recover a larger format image with all
the available detail. Four matching pairs of points are shown,
linked by the dotted lines (though many more matching pairs can
be found). Given these point correspondences, we can warp the
image (b) to be in the same coordinate frame as (a). Placing the
warped image beside image (a) allows us to make a panorama im-
ages (where we can see all the detail from both images). When
we warp image (a) then the result is spatially distorted, which is
why the combined image (c) appears to have a non-square shape.
In black, we frame the part of the combined image that has the
usual rectangular shape and combines information between both
the images.

So, how do we map one image onto another? Let the cor-
responding pairs of 4 points in the images (a) and (b) be re-
spectively denoted by the coordinate pairs (xi,yi) and (ui,vi)
(i = {1,2,3,4}). In geometric warping, it is often useful to invert

Figure 2: Image (b) is warped into the coordinate frame of image
(a) [by matching the corresponding points linked by the dotted
lines] and then combined with (a) to form the panorama image in
(c)

the image formation (that maps points in 3D to 2D pixel location
counterparts). To achieve this, points are mapped to 3-D corre-
sponding homogeneous vectors: pi = [xi yi 1]t and qi = [ui vi 1]t

(here and throughout this paper t denotes the transpose operator).
The intuition here is that we represent the points in the image as
having a depth of 1.

Since we only have a 2D image we cannot recover the 3D
geometry, but the actual 3D point should lie on the ray (all points
that are scalings from their homogeneous coordinate vectors). In
many circumstances, given an image of a 3D scene, we can pre-
dict the scene captured by a camera in a different position with-
out having to understand the depth of points in a scene. Rather,
it suffices to multiply the rays by a 3× 3 homography matrix to
generate new rays. Then we map rays to points (we simulate 3D
to 2D image formation). To a good approximation, if we take
two pictures from a camera at the same position (though different
orientations) or view scenes from sufficiently far away (and can
assume that the observed scene points are at a similar depth) then
this (i) point-to-rays, (ii) apply 3× 3 matrix and then (iii) repro-
ject methodology is the correct way to warp one image into the
coordinate frame of another. A useful property of the homogra-
phy mapping – that has to be true given our visual example – is
that the resulting homography between the 2D coordinates will
map straight lines onto straight lines. For more details, see [14].
Mapping Colour: We recapitulate colour image formation at a
point as

ρ =
Z

ω
Q(λ )C(λ )dλ (1)

where respectively, ρ , ω , Q(λ ) and C(λ ) represent the RGB sen-
sor response, the visible spectrum (here, assumed to be 400 to
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700 nanometres), the 3-spectral sensitivities of the camera and
the spectrum of light entering the camera. Often in colour mea-
surement, we are interested in mapping ρ to a corresponding XYZ
tristimulus χ (since the latter is referenced to how we see colours
in the world). Denoting X(λ ) as the CIE colour-matching curves
[1] (we use the 2 degree standard observer throughout), χ is cal-
culated as

χ =
Z

ω
X(λ )C(λ )dλ (2)

Often, the mapping from RGB to XYZ is a linear 3×3 ma-
trix M such that

ρtM ≈ χt (3)

here t denotes the transpose operator. For the purposes of deriva-
tions set forth in the next section , it is useful for M to be a post-
multiplying correction (hence we transpose ρ and χ). In Figure
1 – where we use vector functions – we, instead, transpose the
matrix). The meaning of M is the same throughout this paper.

Now let us relate (r,g) chromaticities with corresponding
(x,y) counterparts where we calculate rg and xy chromaticities
as:

(r,g)=
�

ρR
ρR+ρG+ρB

, ρG
ρR+ρG+ρB

�

(x,y)=
�

χ1
χ1+χ2+χ3

, χ2
χ1+χ2+χ3

�
(4)

Clearly, the vector [r g 1]t (point to ray) is proportional to
the vector [ρR ρG ρR + ρG + ρB]

t . If ρt is mapped to χt by M
(Equation 3), then there must exist a matrix M′ which maps ρ ′ =
[r g 1]t to χ ′ = k[x y 1]t (where k is a scalar). Let’s define

C =




1 0 1
0 1 1
0 0 1


 (5)

It follows that

M′ =C−1MC (6)

and

[χ ′]t = [ρ ′]tM′ (7)

Mapping rays to points to calculate chromaticities
(χ ′

1/χ ′
3,χ

′
2/χ ′

3) = (x′,y′). The mapping from rg to xy
chromaticities is the same as the homography image warping
discussed previously. We map rg chromaticities to homogeneous
coordinates (points to rays), apply a 3 × 3 colour homography
matrix (M′) and reproject to recover corresponding xy chro-
maticities. There is a small difference with the geometric case,
however. Specifically, we only expect the colour mapping to be

approximate. In the geometric case, solving for the homography
can precisely model the actual geometric distortion.

Another important difference to the geometric mapping case
is that in solving for the colour homography, we generally have
access to, and are interested in, the 3rd dimension (depth in the
geometric analogue). One consequence of this is that the solution
strategy for colour homographies is, hitherto, posed quite differ-
ently from its geometric analogue.

Solving for a colour homography:. Suppose we have a pair
of n × 3 matrices R and X containing, respectively, RGBs and
XYZs induced by n radiance spectra. In colour homography, we
seek to jointly find a 3×3 matrix M and an n×n diagonal matrix
D that minimizes the Frobenius norm (||.||F ):

min
D,M

||DRM−X ||F (8)

The closed-form solution: in the case where n = 4, Equa-
tion 8 can be solved exactly, e.g. see [10]. The intuition on why
this result is true is that for n = 4 the matrix R has 12 measure-
ments. The diagonal matrix D and matrix M have respectively 4
and 9 components, so there are 13 unknowns. But, because there
is a scaling indeterminacy between D and M (we can multiply one
by k and the other by 1/k and get the same result) there are only
12 unknowns to solve for. When n > 4 there are more knowns
than unknowns and an iterative algorithm has to be used to find
the best fit of the data.

The iterative solution: The alternating least-squares algo-
rithm is summarised in Algorithm 1.

Algorithm 1 Alternating Least-Squares

1: D0 = In×n, M0 = I3×3, stop = false, i = 0
2: while ∼ stop do
3: i = i+1
4: min Mi ||Di−1RMi −X ||F
5: min Di ||DiRMi −X ||F
6: stop = ||Di−1RMi−1 −DiRMi||F < ε

7: end while

where ε is a small non-negative real number (set by the user).
I3×3 and I31×31 respectively denote the 3×3 and 31×31 identity
matrices.

There are 4 types of colour homography reported in the liter-
ature. When R and X are, respectively, the spectral sensitivities of
the camera and the XYZ colour-matching functions (we discretely
sample across the wavelength domain), then, when we solve for
the optimisation, the diagonal matrix D can be interpreted as a
physical filter, f (λ ) which, when placed in front of the camera,
results in sensitivities well-related by a linear transform [9]. Re-
turning to Figure 1, in panel (e) we see the best least-squares fit
of a Canon 50D camera to the XYZ colour-matching functions by
a linear transform. The fit is rather poor, and this indicates that
this camera will see differently – at least to some stimuli – to how
we see these colours ourselves. In panel (f) we see the filtered
sensitivities of the camera fitted to match the XYZ CMFs. The fit
is excellent, indicating that the camera+filter is quite colorimet-
ric. In this figure – as makes sense in the continuous domain –
we show the two colour transforms as Mt

1 and Mt
2 (as here they

premultiply).
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In the second type of homography, we simply have RGB re-
sponse and XYZ tristimuli data. Here, the matrix D performs a
shading correction [10, 15]. In the 3rd type of colour homogra-
phy, as well as having measured camera sensitivities and CMFs
we also have measured spectral data [10]. One can then formu-
late a more complex optimization statement than Equation 8 and
solve for the optimal filter given the measured spectral data. Fi-
nally, it is possible to find the best homography mapping rg im-
age chromaticities to corresponding xy chromaticities [16]. All
four of these applications of colour homography are solved us-
ing alternating least-squares. The underpinning theory of colour
homography has been developed and extended in several inter-
esting ways. This includes considering the role of noise in filter
design [17], the minimum transmissivity of the filter [18, 19] and
evaluating commercially available filters [20]. Colour homogra-
phy theory has been applied to colour correction [16], to colour
transfer [21] and image indexing [10] among other problems.

Finding the Geometric Warp Filter
In this section, we will consider the colour homography map-

ping between the rg spectral loci of a camera system to u′v′ chro-
maticity diagram. Figure 3 illustrates our method.

Figure 3: Top: the rg locus for a Canon 50D Camera. Middle:
the u′v′ spectral locus. We match 4 rg and u′v′ chromaticities
for the same wavelengths (they are joined by the orange dotted
lines). Bottom: the rg chromaticity diagram warped into the u′v′

coordinate frame is shown (solid magenta) and contrasted with
the actual u′v′ locus (dashed black line).

In the top panel, we show the native rg chromaticity diagram
for the Canon 50D camera (also the subject of Figure 1). From
420 through 670 nm, the locus is plotted in thick, solid magenta.
At 10 nm sampling, the corresponding locus chromaticities are
marked with an ‘O’. Because the camera sensitivities from 400
to 420 and 670 and 700 nm are below a criterion amount (the
camera is not very sensitive to these wavelengths) the locus here
is shown in a thin black line. In the middle panel, we plot the
u′v′ diagram. Here, per 10 nm wavelengths are marked with an
‘X’. The four orange dotted straight lines linking the rg and u′v′

diagrams join corresponding wavelengths in the two loci. Given 4
pairs of points, we can solve for the homography that maps the top

chromaticity diagram into the middle’s (u′v′) coordinate frame.
The homography-based geometric warp, applied to all the locus
points, is shown in the bottom panel (solid magenta). Where, the
actual u′v′ locus is, for reference, shown as a dashed black line.
The fit is excellent.

Let us now examine the computation illustrated in Figure 3
including showing how this relates to colour filter design. Assum-
ing n spectral samples, we can place the spectral sensitivities of
the camera and colour-matching functions in the columns of the
n×3 matrices R and X . In forming spectral locus of the camera,
we calculate R′ = RC (C is defined in Equation 5). The first two
columns of R′ (which we denote as R′

(·,1:2)) are unchanged and
the last column, denoted R′

(·,3), is the sum of R, G and B.The
matrix R′ is in a useful form for calculating chromaticities. The
ith chromaticity is equal to (ri,gi) = (R′

i,1/R′
i,3,R

′
i,2/R′

i,3), How-
ever, for our purposes it is useful to think of chromaticities as the
3-component homogeneous vectors: [ri gi 1]t . We calculate the
n×3 matrix, R, of homogeneous chromaticity coordinates as

R = p(R′) = diag(dR′
)−1R′ , dR′

= R′
(·,3) (9)

where the diag() maps a vector to a diagonal matrix. To ease nota-
tion, p(R′) denotes the projection of the vectors in R′ (dividing by
the 3rd coordinate is the perspective projection that for an image).
An immediate, and useful, property of p() is that it is indepen-
dent of row scaling. In reviewing colour homography in the last
section, an n×n diagonal matrix was denoted D. By construction:

p(DR′) = p(R′) (10)

We could consider mapping rg chromaticities to any percep-
tually relevant chromaticity space. We propose to use u′v′ chro-
maticities here, as the colour space is approximately perceptually
uniform[1]. Thus, to facilitate the computation of u′v′ chromatic-
ities, we introduce a new transform matrix C1 (that follows from
the standard u′, v′ definitions, e.g. found in CIELUV [1].

C1 =




4 0 1
0 9 15
0 0 3


 (11)

Letting, X ′ = XC1 then the n×3 matrix of u′v′ homogeneous
coordinates is calculated as

X = p(X ′) = diag(dX ′
)−1X ′ , dX ′

= X ′
(·,3) (12)

The first two columns of X contain the u′v′ chromaticity coordi-
nates. By construction, the 3rd column is a vector of 1s.

Suppose we wish to map R to X in the usual colour ho-
mography way we could solve

D′RM′ ≈ X (13)

(where we use ′ to signify we are mapping homogeneous coordi-
nates).
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From discussion around Equation 8, we know that if n = 4
then we can find a unique D′ and M′ (up to a scalar) such that
D′RM′ = X . Further from Equation 10, we know that (for these
four points) and the optimal M′

P = p(RM) = p(D′RM′) = X (14)

Under the assumption that we wish to map 4 points exactly,
we can find the best homography relating R to X using Geomet-
ric Warping, Algorithm 2 below. There, to index the i, j, k and lth
row of a matrix we use the subscript ([i, j,k,l],·). In this algorithm,
we, by brute force, find the exact – in closed-form – homography
relating the chromaticity coordinates at 4 wavelengths[10]. These
4 camera chromaticities are mapped exactly to 4 corresponding
u′v′ counterparts. According to each of these mappings, we cal-
culate how well all the points are mapped to one another. The best
overall homography mapping is chosen.

Algorithm 2 Geometric Warping

1: ERR=∞
2: for ∀([i, j,k, l] ∈ {K ⊂ {1, . . . ,n} | |K|= 4} do
3: Find M

′′
s.t. p(R([i, j,k,l],·)M′′

) = X([i, j,k,l],·)
4: err = ||p(RM

′′
)−X ||F

5: if err < ERR then
6: M′ = M

′′
, ERR = err

7: end if
8: end for

Let us now consider how this geometric fit relates to filter de-
sign. As for the rg and u′v′ coordinates, let us explicitly write out
how the warped homogeneous coordinates are mapped to chro-
maticities. Let the final approximate u′v′ coordinates, R̂, be de-
fined as

R̂ = diag(dRM′
)−1RM′ , dRM′

= [RM′](·,3) (15)

Interestingly, because we know how X was derived from
the colour-matching functions X , we can map these approximate
chromaticities to approximated XYZ CMFs, X̂ :

X̂ = diag(dX ′
)R̂C−1

1 (16)

Here the diagonal matrix diag(d̂X ′
) undoes the perspective

projection (Equation 12) and post-multiplying by C−1
1 them maps

us back to the XYZ CMFs. In fact, because we know how we
mapped RGBs to homogeneous coordinates, the homography M′

and the projection of the transformed coordinates to the u′v′ chro-
maticity plane, we can explicitly write these operations too: R
(the original camera sensitivities) relate to X (the XYZ CMFs)
according to:

X ≈ diag(dX ′
)diag(dRM′

)−1 diag(dR′
)−1RCM′C−1

1 (17)

Since R represents the spectral sensitivities of the camera, the
meaning of Equation 17 is that a diagonal matrix premultiplies the

sensitivities and then is post multiplied by a 3× 3 matrix. Phys-
ically, the diagonal matrix can be thought of as being equivalent
to the coloured filter illustrated in Figure 1. We call this filter the
geometric warp filter, and it is defined in Equation 18.

f (λ )≡ diag(dX ′
)diag(dRM′

)−1 diag(dR′
)−1 (18)

Note here there is no explicit computation of the filter. Sim-
ply, if falls out of the known projective geometry at hand. Finally,
note if we substitute M =CM′C−1

1 In Equation 17 we are back in
the colour homography form, Equation 8.

Experiments
We return to the example set forth in Figure 1. Now, using

Algorithm 2 we warp the rg chromaticities of a Canon 50D cam-
era to u′v′ counterparts using Algorithm 2. And once we find the
best geometric warp, the corresponding optimal filter is returned
by Equation 18. The result of filter design by geometric warp-
ing (red line) versus using alternating least-squares (blue line) is
shown in Figure 4. It is clear the filters are similar – peaks and
toughs are located at the same wavelengths – but different. This is
not too surprising as the geometric warp delivers the best filter for
matching chromaticities and the colour homography matches full
3-dimensional sensitivities. Predictably, if you change the error
metric, the best solution to a problem can also change.

Figure 4: Blue and Red lines respectively filters designed by Alternating
Least-Squares and Geometric Warping

In Figure 5, we summarise the results of an experiment for
mapping rg loci for 28 cameras[11] to the u′v′ locus. Here each
camera is represented by a 31×3 matrix numbers corresponding
to the R, G, B colour channels and where the wavelength domain
is from 400 to 700 and sampled every 10 nm . The XYZ CMFs
are similarly represented as a 31× 3 matrix. For each camera,
we solve for 3 mappings Mi, i = {1,2,3}. The mapping M1 is
simply the least squares fit from the camera sensitivities to the
XYZ CMFs. We then map the fitted values to 31 u′v′ coordinates.
In the second fit, we run the prior art filter design method[9] to
find a diagonal matrix D and a 3×3 matrix M2 (we use Algorithm
1 and minimize Equation 8). Because D only scales the rows of
the camera sensitivity matrix X it plays no role in the formation
of u′v′ coordinates (we need to calculate D to find M2 but once
found we can ignore it here). Lastly, we find the fit, M3 according
to the geometric warp described in the last section (Algorithm 2).

In Figure 5, we plot for each of the 28 cameras the mean
u′v′ errors (the Euclidean distance between the corresponding per
wavelength actual and approximate u′v′ coordinates) multiplied
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Figure 5: Solid Red, u′v′ error for simple least-squares. Dashed
purple shows same error for colour homography (Algorithm 1).
Solid blue, u′v′ error for the homography found by geometric
mapping (Algorithm 2).

by 13 (since when the Luv colour space is used to gauge colour
differences for reflectance samples the multiplication by 13 yields
distances corresponding roughly to a JND of 1 [22]). The, least-
squares mean error (M1) is shown in red, colour homography er-
ror (M2 found using Algorithm 1) in dashed magenta and the new
geometric warp method error (M3) is shown in solid blue. Com-
pared to a least-squares fit, the geometric warp returns about half
the mean Delta u′v′ error.

Perhaps unsurprisingly, the geometric warp optimization al-
ways minimizes the mean Delta u′v′ error works best for all cam-
eras. Also, in general, the mapping found using the colour ho-
mography method (Algorithm 1) works well. Though in one case
(for the PointGrayG2 camera) a simple least-squares fit results in
lower u′v′ fitting error. This camera – of all 28 – is the least col-
orimetric after filter compensation. Moreover, Algorithm 1 does
not attempt to minimize the u′v′ error. These facts taken together
account for this unusual (1 out of 28 cameras) circumstance where
solving for a filter - using the prior art method [9] - results in less
accurate mapped chromaticities.

While a filter designed based on the spectral sensitivities
of a camera or its corresponding rg locus, we are, in effect, at-
tempting to find the best worst-case filter. Indeed, we are assum-
ing that any spectra might be measured by a camera, including
monochromatic stimuli. However, in everyday imaging scenar-
ios, the scenes we capture contain surfaces with smooth spectral
reflectances, and they are illuminated by orange, yellow, white,
and blue lights (but rarely by purple or green lights). Thus, we
wish to look at filter performance for a set of real lights and sur-
faces.

In this experiment, we use the same 28 cameras and the SFU
set of 1995 reflectances and 102 lights [23]. Per camera and light,
we make 3 sets of raw RGBs: the native camera RGBs and two
sets where we use filtered camera spectral sensitivities. The first
filter is the one returned by our geometric warping idea (Algo-
rithm 2). Now, we use the geometric warp filter to initialise Al-
gorithm 1 (find the colour homography) and recover the Refined
Geometric Warp Filter. The rationale here is that, in this experi-
ment, we seek a good filter not for projective coordinates but full
3-dimensional camera RGBs and XYZ tristimulus values. For

each filter condition – no filter, geometric warp filter, and refined
geometric warp filter, we calculate the CIELAB Delta E between
the measured per camera and per light RGBs and the XYZs for the
same light. Per filter condition, this returns 1995∗102∗28 ∆E er-
rors. The corresponding box plot for the 3 filter condition errors
is shown on the left of Figure 6. We also show the No-Filter and
Refined Geometric Warp filter box plot just for the Canon 50D
camera, on the right.

Figure 6: Colour measurement performance - with and without a
filter correction - for all cameras and, separately, the Canon D50.

The line in the centre of each box records the median error.
The top and the bottom of the box demarcates 25 and 75% quan-
tile errors, and the top and bottom of the dotted lines the 99 and
1% quantiles. The ‘X’ marks the mean errors. In broad sweep,
this experiment returns statistics similar to the prior art [9]. The
mean error without the refined filter is over 50% larger than with
it in place. The performance increment is even larger for typi-
cal photographic cameras. For the Canon D50 camera, the mean,
median and 95% quantile errors are less than half for the Refined
Geometric Warp Filter than the non filter case.

Conclusion
In colorimetric filter design, a special transmissive filter is

designed which, when it is placed in front of a camera, makes the
camera more colorimetric. Hitherto the optimisation for solving
for a good filter has, arguably, had two weaknesses. First, the effi-
cacy of the optimisation depends on choosing a good initialisation
condition. Second, the prior art optimisation as formulated does
not minimise a perceptually relevant metric.

In this paper, we presented a surprising result. We demon-
strated that the problem of geometrically warping an rg camera
chromaticity diagram to one derived from human vision colour-
matching functions – we use u′v′ here – is the same as con-
ventional homography mapping in the spatial domain (e.g. for
making panoramas). For all cameras tested, we can geometri-
cally warp the rg camera loci onto u′v′ to a good approximation.
Moreover, so long as we keep a record of how chromaticities are
formed, the best colorimetric filter falls from the warp operation
for free (without any explicit optimisation). Our method both
finds a globally optimal colorimetric filter and – as we are using
u′v′ target chromaticity coordinates – does so in a perceptually
relevant way.
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