
A Common Framework for Scripting Tutorials

Erik Hjelmås and Ivar Farup

Abstract
A scripting tutorial should focus on teaching the characteristics of scripting
languages, avoiding the pitfall of teaching only syntax conversion from
system programming languages. Examples should be selected to emphasize
features of scripting languages in general (e.g. weak typing, associate
arrays, “gluing”) and the scripting language at hand. Students might
benefit from using the same framework (structure of programming elements
and examples) for learning multiple scripting languages. Their existing
programming skills should be reused while newly introduced scripting
concepts should be reinforced in subsequent examples.

1 Introduction
Scripting languages are popular for solving problems in many different domains [8].
Some are general scripting languages such as Perl, Python and Ruby, while others are
slightly domain-specific (platform-specific: Bash, PowerShell) or very domain-specific
(application-specific: Cfengine, Matlab). They can be characterized as high-level and
weakly typed, as opposed to system programming languages such as Java and C++ [11].
In higher education, scripting languages are used both for introductory programming
courses [14] and for lab exercises in later courses. It is in this last context the present work
seeks to contribute to a better learning experience for students. Although much effort
has been invested in researching ways of teaching introductory programming [12], the
problem of how to convert existing programming skills to a new language seems slightly
overlooked. The way this is solved in practice is by either providing a short tutorial style
introduction to the new language, or referring the student to an online tutorial resource. A
tutorial can be described as [16]:

A tutorial is one method of transferring knowledge and may be used as
a part of a learning process. More interactive and specific than a book or a
lecture; a tutorial seeks to teach by example and supply the information to
complete a certain task. Depending on the context a tutorial can take one
of many forms, ranging from a set of instructions to complete a task to an
interactive problem solving session (usually in academia).

Students with some programming background should be able to quickly get going in
a new language. Quickly meaning half-a-day (four teaching hours, 45 minutes each)
tutorial session. Student’s programming skills depend on the number of programming
courses they have completed, on how much time he or she has invested in actual

This paper was presented at the NIK-2011 conference; see http://www.nik.no/.

programming practice and how many programming languages he or she has encountered.
The prerequisites of a scripting tutorial session in the second half of a study program
must require that students already have aquired programming skills. The transition to a
new programming syntax in a short tutorial will be too challenging if the student has not
passed the hurdle of feeling comfortable with basic programming constructs. The learning
outcome of a half-a-day scripting tutorial can be formulated as:

The student should be able to apply the programming syntax of the new
scripting language to existing programming skills. The student should be
able to describe the basic characteristics of the new scripting language and
its typical application domain/domain of use. The student should be able to
find the relevant help and documentation to broaden his/her knowledge of the
scripting language further.

There are a plethora of excellent scripting tutorials available on the Internet, but we
have not found tutorials that cover multiple languages based on the same structure and
examples. In this paper we propose such a structure, including discussion of issues and
concrete recommendations.

In the following section we will describe the characteristics of some of the existing
scripting tutorials and form the basis of our framework. In sections 3 and 4 we present
the selection process of the included programming elements and examples. In section 5
the current implementations of the framework are described which is further discussed in
section 6, and with concluding remarks in section 7.

2 Survey of scripting tutorials
We have selected five scripting tutorials, one for each of the three most popular general
scripting languages according to tiobe.com: PHP [3], Python [9] and Perl [5], and two
platform-specific ones: Bash [7] and PowerShell [13]. The selection criteria was threefold:
the tutorial should require exisiting programming skills, most of the content should be
possible to cover in less than a day, and the content should be quite general (not domain
specific). In addition, the tutorials should appear to be quite popular (meaning they should
appear on the first couple of pages of a Google search).

Each tutorials presentation sequence of classical programming topics is shown in
table 1. In addition, the characteristics of each tutorial can be described as:

PHP [3] There is a separate part early on assignment, arithmetic, comparison and logical
operators. In other words, operators are addressed as a separate topic. Associative
arrays (and arrays in general) are not treated together with variables, addressed later
in the tutorial.

Python [9] A top-down approach is applied, starting with two examples first demon-
strating many Python (and scripting in general) features. Conditionals are not intro-
duced. It includes a discussion on Pythons treatment of strings vs numbers.

Perl [5] This tutorial introduces variables and containers first, but leaves associative
arrays to after control structures. The final chapter is devoted to regular expressions.

Bash [7] Associative arrays where not introduced in Bash before 2009 so it is not
included in this tutorial. Similar to the Python tutorial it starts out with a simple
example demonstrating syntax followed by an example demonstration scripting
features (in this case, “gluing”).

tiobe.com

Programming element PHP Python Perl Bash PowerShell
Intro/Syntax 1 1 1 1 1
Variables/Containers 2 3 2 2 2
Conditionals 3 3 4 3
Loops 4 2 4 5 4
Input/Output 5 3
Subroutines/Functions/Procedures 5 4 6 5 5
Classes/Objects 6
Libraries/Modules 7
Regular expressions 5

Table 1: The sequence of programming elements in a few selected tutorials.

PowerShell [13] Since command line shells are less of an issue on Windows platforms
compared to Unix/Linux platforms, much material in the start of the tutorial is
devoted to the use of the PowerShell, before scripting is addressed. Associative
arrays are called hash tables and introduced early, followed by control structures
and functions, before quickly moving on to windows specific topics.

Naturally, these tutorials differ in coverage and sequence based on both the preference
of the author and the intended audience. However they all cover some topics that are
characteristic of scripting languages: weak typing and associative arrays (except the Bash
tutorial since it is a quite new feature of Bash).

3 Characteristics of scripting languages
Scripting languages are high-level languages where focus is on high programmer
productivity rather than fast program execution time [8]. Programmers can do more with
less in scripting languages, but scripting languages should be considered supplementary
to system programming languages since they are commonly used for “gluing” together
components written in system programming languages. Scripting languages have weak
typing, meaning whether variables are declared before use or not is optional, and common
practice is to not declare variables: leaving it to the interpreter (dynamic typing). This
encourages reuse of components since strongly typed interfaces are avoided [11]. Some
scripting languages (e.g. Perl) also have operators that behave differently based on
context. E.g. they treat variables as different types dependent on the values used in an
assignment construct.

The scripting languages that are “Shell-based” such as Bash and PowerShell are
integrated with command-line usage, making use of environment variables and piping.
This makes input/output very well accommodated, since piping is an easy way of creating
communication channels between components (“glued together”) and also makes reading
or writing to files easy.

Some programming constructs are more widely used in scripting languages than in
system programming languages. Among containers, the associate array has always been a
key element for script programmers. This is due to the application domain, with scripting
languages being used for text processing and parsing of object collections. It is also a
consequence of weakly typed languages since weak typing makes mixing types in the
same array easy. With widespread use of associate arrays, the foreach loop is also a
typical feature of scripting languages, where looping an object collection is done without

any test condition for loop termination. Being a text/object parsing and gluing language, a
scripting languages also has support for here documents (also called heredoc, here-strings,
hereis, here-script) [15].

4 Examples
Examples play a slightly different role in scripting tutorials than in introductory
programming courses. While focus on learning to program is the most important in
programming courses, focus is on new syntax and demonstration of scripting specific
features in scripting tutorials. However, some characteristics of good introductory
examples also apply to scripting tutorials. Börstler [2] defined ten quality factors for
examples in introductory textbooks on object-oriented programming. Five of these can
also be applied to scripting examples (the remaining five are specific to learning object-
oriented programming):

T1 - Correctness and completeness The code is bug free and the example is sufficiently
complete.

T2 - Readability and style The code is easy to read and follows a consistent formatting
and style.

D1 - Sense of purpose Students can relate to the example’s domain and computer
programming seems like a reasonable way to solve the problem.

D2 - Process An appropriate programming process is followed/described.

D3 - Well balanced cognitive load Explanations and supporting materials promote
comprehension; they are neither simplistic nor do they impose extraneous cogni-
tive load.

T1 and T2 are related to “technical quality”, and D1, D2 and D3 are related to “didactic
quality”. In addition, we define the following quality factors specific to examples in
scripting tutorials:

S1 - Efficiency Since scripting languages are interpreted, sometimes with frequent use
of sub processes, examples should be as efficient as possible.

S2 - Scripting related Examples should focus on the characteristics of scripting
languages mentioned in section 3.

S3 - Reinforcement Focus in examples should be on showing differences to what
is already know, while reinforcing everything that is new. New programming
constructs are always challenging to understand. Repeating these new programming
constructs (reinforcement learning) in multiple examples improves the learning
process.

S4 - Security This is not specific to scripting, but should be a characteristic of any piece
of code.

Examples should be selected with these criteria in mind.
The earliest examples in a tutorial introduce variables/containers (compound

variables). Section 2 showed that the associative array is sometimes introduced together
with variables in the early part of a tutorial and sometimes delayed to after control

email = {'Erik ': 'erikh@hig .no', # create dictionary
'Frode ': 'frodeh@hig .no'} # with two items

email['Ivar '] = 'ivarf@hig .no' # expand dictionary
print len(email) # prints "3"
email.pop('Frode ') # remove one item
print len(email) # prints "2"

Figure 1: Python example showing the use of an associative array (called dictionary in
Python) with dynamic expansion and deletion.

infile = open('emails .txt ', 'r') # open file for reading
for i in range (10): # loop with fixed range

line = infile . readline () # read (10 first lines)
line = line.strip('\n'). split(' ') # parse
email[line [0]] = line [1] # expand dictionary

print len(email) # prints "12"
for k, v in email. iteritems (): # print entire dictionary

print k, v # (no particular order)

Figure 2: Python example showing a loop with a fixed range. The scrip reads the ten first
lines of the file (without checking), parses them and expands the array already created in
Figure 1. Finally, the entire assosiative array is printed.

structures. Figure 1 introduces the associative array (called dictionary in Python) and
demonstrates three characteristics of scripting languages (D1, S2):

• No declarations are needed (reinforcement of dynamic typing – S3).

• Automatic array expansion (reinforcement of automatic memory management –
S3).

• Easy use of high-level data structures such as the associative array (the new concept
– S2).

Figure 2 shows how a loop can be implemented (in Python) without testing a condition
on every iteration. The example script reads the ten first lines of a formatted file with
names and corresponding email addresses, parses the line, and add the content to the
assosiative array created in the previous example. Finally, the entire dictionary is printed
using a construct similar to the foreach loop. The script demonstrates the following
characteristics (D1):

• Automatic expansion of dynamic arrays (reinforcement – S3)

• No testing in loop (new concept – S2)

• File operations: opening and reading (new concept – S2)

• String operations: srtripping and splitting (new concept – S2)

• The foreach loop (new concept – S2)

Figure 3 is an example of “gluing” (D1, S2) by using the existing powerful and
widely used wget program to build a small program which is typically executed from

the command line like this:
$./mywebsearch.bash '(SSD|ssd)' < urls.txt
This program takes a regular expression as a command line argument, downloads web
pages from urls in a file fed from STDIN and search the web pages for lines using
the regular expression. This example program uses characteristic scripting languages
features: easy input from command line, here document, automatic declaration and
expansion of an array, use of special variables, regular expressions and gluing (use of
wget and cat). This small script also raises numerous programming questions (D2, D3):

• Security (S4): are the temporary files uniquely named? are you deleting the same
files that was created (Time-Of-Check-to-Time-Of-Use - TOCTOU issues can be
discussed)? what happens if you download an extremely large file? what happens
if the file name contains http://something;rm -rf /? is it safe to trust the path
and call wget (and cat) or maybe better to call /usr/bin/wget (even though this
makes this less portable)? There is no input validation at all in this script, so it is not
robust, but complete input validation in examples can destroy the simplicity of the
examples. Robustness should many times be discussed related to examples instead
of included.

• Efficiency (S1): run this just a few times and you will quickly realize that you need
some caching to avoid downloading the same files over and over, it quickly gets
annoying. Is it really necessary to use two loops, maybe they should be joined to
one?

• Usability: this quickly provides interesting information and a number of questions
regarding how to present this: should we launch a web browser? use a dialog box?
just format nicely in the terminal window?

This example can be used as an introductory example or as an summary example,
dependent on whether the tutorial has a top-down or bottom-up approach. When used
as a summary example it reinforces (S3) a large set of features of scripting languages.

5 Proposed framework
A framework for introductory scripting tutorials should be practical with plenty

of examples, but also easy to use as basic reference material since the purpose is
learning syntax and special features of the language at hand (and scripting languages
in general) more than teaching students basic programming. Many student are scared of
new languages. A tutorial document will be their first encounter with a new language and
needs to be as comfortable and motivating as possible.

Figure 4 shows the structure of the proposed framework. The introduction should
include practical information about the tutorial: which tools/virtual machines needed,
and how the examples can be retrieved from the internet (wget or similar) in order
to avoid wasting time typing in all the examples or copying/pasting. Copying/pasting
from slides also many times cause character mapping problems, e.g. with characters
embracing string literals such as quotation marks. Following the practical information
there should be a short introduction to the origin and history of the language, before a
simple introductory script (e.g. “hello world”) is presented with an practical demo of how
it is compiled/interpreted and executed. This simple script should also serve to present the
basic syntax of the language. It might be good to also mention relevant debugging/helper

while read line; do # line by line from STDIN
url[$i]= $line
tempfilename [$i]=" $RANDOM .tmp" # create random file name
echo " retrieving $line to ${ tempfilename [$i]}"
wget -q -O "${ tempfilename [$i]}" $line # download webpage
((i++))

done
echo "***** Relevant hits *****"
for i in ${! tempfilename [@]}; do # each downloaded webpage

while read line; do # parse line by line
if [[$line =~ $1]]; then # match CLI -arg regexp

echo -n ${ BASH_REMATCH [0]} # print the match
if [[${url[$i]} =~ http ://([^/]+)]]; then

echo " from ${ BASH_REMATCH [1]}" # print domainname
fi

fi
done <<< "$(cat ${ tempfilename [$i]})" # feed with here document
rm ${ tempfilename [$i]} # clean up

done

Figure 3: A glue example in Bash.

tools, but since this is a tutorial session, it is important to quickly get started with the actual
programming contents. Dependent on the pedagogical preference between top-down and
bottom-up approaches, further introductory examples might be given to show new and
motivating features of the language at hand and scripting in general.

A natural starting point for any programmer moving into a new language is variables
(or containers in general). Variables in this context is a broad term under which we
also can introduce arrays and compound data types. Even though we might use some
input/output in the examples used in the variables section (which is not a problem since
we are teaching programmers), it should follow as a separate topic after variables if
the scripting language is shell-oriented. Input/output is of special importance in many
scripting languages since scripts are very often used in command line pipes, or used for
parsing (structured) text from files or data that is output from system commands. It is also
appropriate to introduce the here document in this context since it is a program constructs
mostly found in scripting languages.

The classical control structures for branching (conditionals) and looping (loops) are
if/else, switch/case, for, while and do. In addition to covering the scripting language
specific syntax for these statements, it is important to emphasize the operators used in
conditional statements. A scripting language can offer several operators not commonly
found in system programming languages, and operators differ significantly in both syntax
and semantics. Weight should also be put on foreach statement since it is commonly used
with associative arrays. Piping or feeding data from system commands into the script was
introduced in the input/output section, but should be reinforced at this stage by combining
this with a loop statement (applies especially for shell-oriented languages).

We recommend that in such a “getting started” tutorial not too much weight should be
placed on functions/subroutines as scripts tend to be short by nature, but this also depends
of the intended audience. If the tutorial is intended for a general scripting language and
for upcoming programming projects on a larger scale, spending more time on functions
might be a good idea. This is also a good place in the structure to introduce the available
operators for arithmetic (math) because the level of arithmetic support varies a bit and

Introduction and Syntax
Variables/Containers

single/scalar
array/sequence/list
associative array
structures
special variables

Input/Output
user
pipe
file
system commands
here document

Conditionals
if/else
operators and precedence
numerical vs string comparison
boolean precedence
switch/case

Loops
for
while
do
foreach

Math
Subroutines/Functions/Procedures/Methods

parameter passing
Classes/Objects
Libraries/Modules
Regular expressions

command line
GUI
Reference material
Case

analyze for efficiency
analyze for security
analyze for usability

Credits

Figure 4: The proposed framework structure.

those languages with limited support can implement extended support in a function as the
subsequent example.

If the language has support for objects, it can be introduced at this stage or earlier,
again dependent on the pedagogical preference of top-down vs bottom-up.

When starting to use a scripting language, students typically encounter regular
expressions (regexps/regexes) in practice for the first time. This topic, if previously
unknown to the audience, need to be addressed with sufficient space since it is both new
and of high importance in the common application domain of many scripting languages.
However regular expressions is many times separated from the language tutorial as a
tutorial by itself.

After concluding the lecture with a brief introduction to how GUIs can be used, and
a section with pointers to more comprehensive reference material, a good trick to make
sure everyone gets going is to jointly solve a small case in iterations. This might also be
the point in time where students start applying their programming skills outside class. At
this stage it is very important to make sure they stick with their taught habits of good
programming practice, and keep thinking efficiency, usability and security [1] in every
program/program statement they write.

The proposed framework is at the time of this writing implemented for the languages
Bash, Perl and PowerShell. The implementations consists of slides, slides with lecture
notes, and downloadable examples. They are available from http://blog.hig.no/
erikh/category/scripting/.

6 Discussion
Many times scripting languages are introduced in specific domains such as web
applications, scientific computing or platform-specific system administration. The
usefulness of a common framework depends somewhat on how the intended learning
outcome balances between domain specific learning and scripting language learning.
Students who will encounter multiple scripting languages might benefit significantly from
a common framework where the domain-specificity is adjusted based almost solely on
the chosen examples. A common framework might take away the “new language fear”
since students know what to expect and can much more easily compare and contrast
scripting languages. It can also be argued that an introductory tutorial should always be
quite general since students always need to know something about the language at hand
before applying it to their specific domain.

The authors have not performed any formal assessment on the learning outcome of
using a common framework for several scripting languages, but some indications on the
usefulness have been registered. During the spring semester 2011 at Gjøvik University
College, 36 students were introduced to Bash and PowerShell in the course Operating
Systems, and 7 out of these 36 were also introduced to Perl in a parallel course (Databases
and Application Administration). All tutorials based on a draft of the framework in
figure 4. During the qualitative assessment of these courses several students commented
that they found a common framework for learning these scripting languages useful.

Authors of scripting tutorials have the benefit that students already know program-
ming. They also have the benefit that scripting languages commonly avoid many of the
topics students find the most difficult in programming, such as pointers, memory man-
agement and virtual functions [10]. This gives us some flexibility when choosing tutorial
structure (top-down and bottom-up approaches). Introductory examples can be chosen to
demonstrate exiting and motivating scripting language features knowing that students al-

http://blog.hig.no/erikh/category/scripting/
http://blog.hig.no/erikh/category/scripting/

ready are comfortable with basic programming constructs. However, the pitfall of over
coverage of material must always be avoided. Tutorials are not similar to extensive text-
books, the focus is to get going in a practical way, staying clear of too much detail and
material in general.

It is also important to try to make a tutorial into a programming text more than
a program text, examples should not just be presented assuming students will write
programs similar to the examples. Examples should be presented together with an
appropriate programming process [4]. Again, this must be carefully considered in such a
way that the tutorial is not too extensive, but at the same time the tutorial should reinforce
good programming practice more than just introduce syntax.

Good scripting tutorials are important to make programming even more accessible, so
that students do program a lot because its easy and fun [6].

7 Conclusions and future work
This article is meant as an aid for anyone who would like to teach a scripting language
as a second language for students. A common framework with a structure that is easily
recognized by students, together with carefully chosen examples, should provide the
grounds for an enjoyable learning experience for students.

Future work includes formal assessment on usefulness of a common framework,
and studying the proposed framework in the context of additional scripting languages
((Visual)Basic, JavaScript, Ruby, Lua). More experience with teaching based on this
framework should also provide more insight into how much material that should be
covered in a half-a-day tutorial session.

8 Acknowledgments
The authors would like to thank Alexander Berntsen for much useful critique of the
Bash tutorial implementation and good scripting practice in general and Frode Haug for
providing comments on the initial drafts of the framework.

References
[1] BISHOP, M. A Clinic for "Secure" Programming. IEEE Security and Privacy 8

(March 2010), 54–56. doi:http://dx.doi.org/10.1109/MSP.2010.62. 9

[2] BÖRSTLER, J., NORDSTRÖM, M., AND PATERSON, J. H. On the Quality of
Examples in Introductory Java Textbooks. ACM Transactions on Computing
Education 11 (February 2011), 3:1–3:21. doi:http://doi.acm.org/1921607.
1921610. 4

[3] CODINGUNIT.COM. PHP Tutorials, 2011. [Online; accessed 07-July-2011]. 2

[4] GRIES, D. What Have We Not Learned about Teaching Programming? IEEE
Computer 39 (October 2006), 81–82. doi:10.1109/MC.2006.364. 10

[5] KUHN, B. M. Picking Up Perl, Edition 0.12, A Freely Redistributable Perl Tutorial
Book, 2002. [Online; accessed 07-July-2011]. 2

[6] KUMAR, D. REFLECTIONS: Language wars and false dichotomies. ACM
Inroads 1 (August 2010), 10–11. doi:http://doi.acm.org/10.1145/1835428.
1835431. 10

http://dx.doi.org/10.1109/MSP.2010.62
http://dx.doi.org/http://dx.doi.org/10.1109/MSP.2010.62
http://doi.acm.org/1921607.1921610
http://doi.acm.org/1921607.1921610
http://dx.doi.org/http://doi.acm.org/1921607.1921610
http://dx.doi.org/http://doi.acm.org/1921607.1921610
http://www.codingunit.com/php-tutorial-language-introduction
http://portal.acm.org/citation.cfm?id=1175878.1175944
http://dx.doi.org/10.1109/MC.2006.364
http://ebb.org/PickingUpPerl
http://ebb.org/PickingUpPerl
http://doi.acm.org/10.1145/1835428.1835431
http://dx.doi.org/http://doi.acm.org/10.1145/1835428.1835431
http://dx.doi.org/http://doi.acm.org/10.1145/1835428.1835431

[7] LINUXCONFIG.ORG. Bash scripting Tutorial, 2011. [Online; accessed 07-July-
2011]. 2

[8] LOUI, R. P. In Praise of Scripting: Real Programming Pragmatism. IEEE Computer
41 (July 2008), 22–26. doi:10.1109/MC.2008.228. 1, 3

[9] MATLOFF, N. A Quick, Painless Tutorial on the Python Language, 2010. [Online;
accessed 07-July-2011]. 2

[10] MILNE, I., AND ROWE, G. Difficulties in Learning and Teaching Programming -
Views of Students and Tutors. Education and Information Technologies 7 (March
2002), 55–66. doi:10.1023/A:1015362608943. 9

[11] OUSTERHOUT, J. K. Scripting: Higher-Level Programming for the 21st Century.
IEEE Computer 31 (March 1998), 23–30. doi:10.1109/2.660187. 1, 3

[12] PEARS, A., SEIDMAN, S., MALMI, L., MANNILA, L., ADAMS, E., BENNEDSEN,
J., DEVLIN, M., AND PATERSON, J. A Survey of Literature on the Teaching of
Introductory Programming. SIGCSE Bull. 39 (December 2007), 204–223. doi:
http://doi.acm.org/10.1145/1345375.1345441. 1

[13] POWERSHELLPRO.COM. Windows PowerShell Scripting Primer, 2007. [Online;
accessed 07-July-2011]. 2, 3

[14] WARREN, P. Teaching programming using scripting languages. Journal of
Computing Sciences in Small Colleges 17 (December 2001), 205–216. 1

[15] WIKIPEDIA. Here document — wikipedia, the free encyclopedia, 2011. [Online;
accessed 10-July-2011]. 4

[16] WIKIPEDIA. Tutorial — wikipedia, the free encyclopedia, 2011. [Online; accessed
10-March-2011]. 1

http://linuxconfig.org/Bash_scripting_Tutorial
http://portal.acm.org/citation.cfm?id=1449375.1449385
http://dx.doi.org/10.1109/MC.2008.228
http://heather.cs.ucdavis.edu/~matloff/Python/PythonIntro.pdf
http://portal.acm.org/citation.cfm?id=593727.593887
http://portal.acm.org/citation.cfm?id=593727.593887
http://dx.doi.org/10.1023/A:1015362608943
http://portal.acm.org/citation.cfm?id=619027.620930
http://dx.doi.org/10.1109/2.660187
http://doi.acm.org/10.1145/1345375.1345441
http://doi.acm.org/10.1145/1345375.1345441
http://dx.doi.org/http://doi.acm.org/10.1145/1345375.1345441
http://dx.doi.org/http://doi.acm.org/10.1145/1345375.1345441
http://www.powershellpro.com/powershell-tutorial-introduction/powershell-tutorial-scripting/
http://portal.acm.org/citation.cfm?id=775339.775376
http://en.wikipedia.org/w/index.php?title=Here_document&oldid=438326732
http://en.wikipedia.org/w/index.php?title=Tutorial&oldid=412954427

	Introduction
	Survey of scripting tutorials
	Characteristics of scripting languages
	Examples
	Proposed framework
	Discussion
	Conclusions and future work
	Acknowledgments

