2015 11th International Conference on Signal-Image Technology & Internet-Based Systems

Exploiting Change Blindness for Image Compression

Steven Le Moan, Ivar Farup
Gjovik University College, Norway
steven.lemoan @ gmail.com, ivar.farup @hig.no

Abstract—Change blindness refers to the inability of our
visual system to memorize details in pictures. We suggest
that, under certain conditions, regions containing such
details can be identified and altered in a way that benefits
image compression. We define change blindness maps and
a compliant texture synthesis method to identify, remove
and subsequently recover pixels which are subject to change
blindness. Unlike comparable methods, ours is particularly
intended for images with complex textures. We demonstrate
via a subjective experiment that up to 15% of such an image
can be altered in a way that is considered as natural and
acceptable.
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I. INTRODUCTION

Traditionally, in image processing and computer vision
applications, models of human perception are used to
assess which information - in an image - can be conveyed
by our visual system and which cannot. This is used
for example to predict subjective judgment of quality.
The common “full-reference” image quality assessment
framework assumes that observers have access to both
stimuli to compare at a same time, so that they can
rate the perceived difference between them [27]. If these
stimuli are shown sequentially however, one needs to
account also for the influence of memory and internal
representations. Several studies have indeed suggested that
our representations of visual scene are sparse, incomplete
or even nonexistent [17], but there is no clear evidence to
validate either of these hypothesis yet. We can however
infer from a phenomenon called change blindness [21]
that, to a certain extent, our representations and the way we
access them simply do not contribute to change perception
[14].

In this paper, we would like to suggest that change
blindness can be exploited for image processing and
in particular for data reduction. We argue that, in
any greyscale or color image, there are some textured
regions that can be somewhat altered without immediately
perceivable change and that these regions are those having
both a low saliency and a high resemblance with the
rest of the image. In order to automatically identify
these regions, we propose an algorithm based on saliency
detection and texture synthesis (alternatively referred to as
exemplar-based inpainting) to create a confidence-adjusted
saliency map, which we refer to as change blindness
map. Pixels with low energy on the map can simply be
removed on the encoder’s side, with high confidence that
they can be recovered from the remaining pixels on the
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decoder’s side with minimal perceivable change. In order
to make the method compliant with block-based encoding
methods such as JPEG, we process pixels by macro-blocks
(typically 8x8 square), not individually. Note that we do
not discuss encoding or decoding strategies as our method
is only intended to reduce the amount of data to encode,
and has to be used together with an encoding/decoding
scheme.

The method is particularly intended for pictures with
complex textured background, as the one shown in
Figure 1. The restored image, while different from the
original one, can be considered as visually equivalent and
we demonstrate via a user study that the discrepancies
between the two are mostly acceptable.

II. RELATED WORK

Digital images captured by modern cameras contain
plenty of visual data, to the point that most of it is not
even perceptible in typical viewing conditions. Identifying
the threshold between what is visible and what is not is of
particular interest for efficient data reduction. For example,
the popular JPEG or JPEG2000 formats are based on
the fact that very high frequencies components can be
represented coarsely without disturbance for the user [22].

Several studies also suggested to exploit spatial
redundancies in textures for image compression. Rane et
al. [20] proposed a basic scheme to delete macro-blocks
in an image, which can be correctly reconstructed by
partial difference equation-based inpainting (for structured
regions) or texture synthesis (for textured regions). Their
method uses a simple coarseness measure based on the
number of local extrema to decide whether a region
is structured or textured, which makes it particularly
dedicated for simple and repetitive textures. Liu et al. [13]
and later Xiong et al. [25] proposed to extract small-sized
descriptors of the edge or gradient content of the blocks
to help their recovery on the decoder’s side. It allows to
drastically reduce the amount of data to encode while
preserving the perceived quality of the scene, yet it is
mostly suitable for images with large uniform non-textured
regions. This kind of approach which consists of using
block descriptors extracted on the encoder’s side to assist
the synthesis on the decoder’s side has been popular
also in video compression [10], [19]. The fact that video
frames are visible for only a fraction of a second makes
it convenient to conceal synthesis artifacts in the least
salient regions [23] and consequently allows to remove
more blocks than if they were still images.
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Workflow of the proposed method to assist image coding. The least significant pixels are those with a low saliency and a high probability

of being restored accurately. The result, though perceptibly different from the original, suffices to satisfy the user in his viewing experience.

What is common to all these previous efforts is that the
changes made to the data are meant to be imperceptible.
Additionally, they rely on the extraction of simple block
descriptors to help during the synthesis (except [20]).
Therefore, they are not adapted for the compression of still
images with complex and irregular textures which cannot
be described with only a small number of attributes. One
solution is to allow a perceptible difference, so long as the
result remains visually appealing. Hays et al. [7] argued
that it is not always necessary to restore an image the
way it should have been to make it pleasing, but instead
it is possible to render it the way it could have been.
They proposed an image completion strategy that fills in
large missing regions in an image with matching regions
from other images. The results, though not real per se, are
appealing.

III. CONTRIBUTIONS

Our study is inspired by Hays’ paper in that we believe
that the semantic content of an image can be modified
intentionally in a manner that does not necessarily disturb
the observer. We argue that if a change in a scene cannot
be located rapidly it can be considered as not disturbing
the viewing experience!, thus implying that the original
and changed images are visually equivalent.

We propose a new approach to data reduction based
on saliency detection and texture synthesis. Unlike related
work, it allows the resulting image to be noticeably
different from the original, while not disturbingly so. On
the encoder’s side, regions with low saliency and which are
potentially easy to recover are completely discarded, thus
reducing the amount of data to encode. On the decoder’s
side, texture synthesis is used to recover the missing pixels
by generating texture composites from the known regions.
Intentionally removing pixels from an image generates
strong discontinuities on the border between known and
unknown regions, which are difficult to encode efficiently.
Many formats such as JPEG decompose the image in small
blocks and compress them individually, which suggests

By viewing experience, we refer generally to the interpretation of
a picture, i.e. the conversion from a visual stimulus to some kind of
semantic information.
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an easy way around the discontinuity problem: erase
entire blocks instead of pixels so that the discontinuities
are invisible to the encoder. The resulting images after
synthesis, though perceptibly different from the original
ones, are visually appealing. Furthermore, we demonstrate
with two subjective experiments that the changes made to
the images do not interfere significantly with the user’s
viewing experience. Figure 1 illustrates the workflow.

To our knowledge, this is the first attempt at exploiting
change blindness for still image compression. This is
particularly important as we aim at making changes which
can be noticed, unlike in the previously cited studies. Our
contributions are as follow:

« We demonstrate that change blindness can - to some
extent - be exploited for data reduction in digital
pictures.

e We define so-called change blindness maps and
propose a simple approach to compute them. Unlike
comparable approaches, ours relies on saliency, does
not use any block or texture descriptor and is
particularly intended for pictures containing complex
textures.

« We propose to use saliency to reduce the patch search
space for inpainting.

¢ We introduce results
experiments which are
http://www.colourlab.no/cid.

from
freely

two  subjective
available at

IV. PROPOSED APPROACH
A. Change blindness maps

In an image I, let us note Aj the set of pixels
which could potentially be modified without disturbing the
observer’s viewing experience. As previously mentioned,
attention seems a reasonable criterion to find Aj. It is
well-known that visual attention is influenced by a variety
of top-down mechanism such as task, memory or culture,
which are not yet well understood, however we can rely
on the proven efficiency of some bottom-up methods such
as the Boolean Map-based Saliency (BMS) detector by
Zhang et al. [26], which have been reported to give
among the best predictions of eye fixations on images
from various databases. For our experiments, we manually



Figure 2. From left to right: original scene (originally 640x480 pixels), boolean map-based saliency map Sy [26], inverse inpaintability map 1 — I'y
(dark locations indicate high inpaintability) according to the measure of patch difference described in Equation (5) and the result of block removal
based on CBj for p = 10%. Note that the maps were both resized for this illustration, their original size is 80x60: each pixel in the original maps

corresponds to a block in the picture.

selected a subset of images from one of these databases:
ImgSal [11]. Even though there exist a substantial amount
of other saliency detectors, we do not discuss in details the
pros and cons of using either of them (for this, refer to
[2]), instead we rely on data that we know to be accurate
in order to validate our hypothesis.

Nevertheless, saliency may not always be a sufficient
criterion to find Ay as the least salient pixels are not
necessarily the easiest ones to replace. What is needed
is a good compromise between low saliency and high
inpaintability?. Therefore we propose to use a simple
combination of a saliency map Sy (obtained with the BMS
model) and an inpaintability map I'y.

Let Wy be the set of non-overlapping blocks into which
I is segmented® and let us consider d(t);;1);) a measure of
the difference between any two blocks 1); and ;. Also, let
o(¥i; ;) be the offset (spatial distance) between the two
patches’ centers. We define the inpaintability of v; € ¥y
as the inverse average of the product of these terms:

[P —1
d(i; b)o(i; s) + €

Y(i) = 1)

>

(IS SHES
where |Wy| represents the cardinality of ¥y. The offset
term favorizes the search for similar pixels in a local
neighborhood. It has two beneficial effects: first, it makes
~(1;) account for local saliency, therefore giving lower
inpaintability to textured regions that stand out from
their neighborhood, regardless how well they could be
reconstructed from the remaining pixels. We found that
this seems to improve the accuracy of the change blindness
map. Secondly, it is compliant with our exemplar search
strategy (see Section IV-B1), which relies on saliency and
proximity. According to this equation, the blocks with
the highest inpaintability are those which have similar
immediate neighbors. The measure d must be the same
one used later for texture synthesis (see Section IV-B2).
The infinitesimal term e is intended to deal with the case
in which d(v;;v;) = 0, V (4, j) (case of a uniform image).
Note that this measure is similar to the one used to detect
local saliency in [1].

2We define the inpaintability of a set of pixels as the probability that it
can be replaced in a visually appealing manner, with a given inpainting
method.

3Note that if the image’s dimensions are not dividable by the block
size, a simple padding can be used.
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We then propose to define the change blindness map
CB;g as:

CBr = (St +1T1)/2 (2)

where I'y is the inpaintability map depicting the spatial
arrangement of y(v;) for ¢; € I, scaled to be in the range
[0..1]. Note that Sy and I’y should be computed (or re-sized
to be) at the same scale. Figure 2 shows an example. The
number of pixels to be removed is a user-defined parameter
which we note p. Eventually, Ay is identified as the set of
p pixels with the lowest energy on CBj.

Note that the higher the resolution and/or the sharpness
of the saliency map, the higher the chance that Aj is
spatially sparse on I (i.e. only small neighborhoods are
removed, which makes the texture synthesis easier because
better guided).

B. Recovering the dropped pixels

On the decoder’s side, the missing blocks are recovered
by exemplar-based texture synthesis. This means that
visually meaningful content is generated from known
pixels, and pasted seamlessly in the unknown regions.
There is a vast literature on image completion and
inpainting [6], and we do not claim that the method
described in this section surpasses the state-of-the-art in
terms of speed or quality. We do however suggest that it is
compliant with the way CBy is computed and used. Recall
that this study is primarily intended to demonstrate that
change blindness can be exploited for image processing.
Other inpainting strategies might perform better at
seamlessly altering A1 on some images, yet our method is
functional, inspired by the state-of-the-art in patch-based
inpainting and allows to prove our hypothesis. Note
finally that all the processes described here were made
in the hue-linearized LAB2000HL color space [12], which
exhibits more perceptual uniformity than CIELAB overall.

1) Patch dictionary: In order to recover missing pixels,
the common strategy used in patch-based texture synthesis
is to create a dictionary of complete patches from the
known regions of the image, which is then used as
exemplar to synthesize the missing pixels. It is well-known
that the size of the patches is a critical parameter that
will strongly influence the quality of the synthesis [6].
Small patches increase the size of the dictionary and
therefore the probability of a good patch matching, but



reduce the ability to deal with large textures. Large patches
on the other hand reduce the chance of blurring artifacts
or repeating structures, but allow to generate less varied
content. Note that, in our experiments, patches were
allowed to overlap with each other, rotate, and flip, so
as to increase the size of the dictionary.

However in any case, it is possible to identify subsets
of patches from the dictionary which have a higher
probability to contain a good match [8]. We propose a
new strategy based on saliency. We consider three levels
of saliency in an image: the foreground (most salient
pixels), the background (least salient pixels), and a level
in-between which we refer to as middleground. Equation
2 implies that the dropped patches belong mostly to
the background, and consequently have little resemblance
with the foreground. Therefore the patch dictionary to
reconstruct Ay does not need to contain patches from the
foreground. Following this, we first isolate the foreground
and build up the said dictionary with the middleground
only (see Figure 3). For the foreground extraction, we
used the method presented in [26]. Note that, because the
saliency map cannot be recovered from the kept patches
only, this implies that the foreground extraction should be
done on the encoder’s side, and that each kept block should
be encoded and transmitted with a one bit-long overhead
indicating whether it belongs to the foreground or not.

2) Patch matching: A typical difference/distance
measure for nearest neighbor search in the patch domain
is the sum of squared distances (SSD), i.e., the sum of all
pixel-wise color differences [5]. It is simple, but limited in
terms of accuracy as it does not fully capture the perceived
differences between patches. Additionally, Bugeau et al.
[4] observed indeed that the SSD, when used alone, tends
to favor uniform patches. In order to improve this, we
suggest to use the SSIM index’ [24] contrast term. The
SSIM index is a popular so-called image quality metric*,
which was reported to be a good predictor of human
judgment. It defines the contrast similarity between two
image patches ; and v; as:

N 20,0 5+ B
e(Wis i) = o?+0?+ B ©
where o; and o; are the estimated standard deviations of
lightness values in patches 1; and 1);, respectively, and
B is a normalization parameter. This term ensures that
patches are compared in terms of their standard deviations,
thus avoiding a bias towards uniform patches.

The resulting measure of the difference between patches
is:

s5d (Vi 7/Jj)

d(¢27¢]) C('I/J“’(ﬁ])
where ssd(v;; ;) is the aforementioned sum of squared
distances between pixels in patches 1; and ;.

Note that this measure is the one that should
be used to compute the inpaintability map I't in

(C))

“Note that the term metric is not used in its proper mathematical
definition. It is however commonly used in the image quality literature.

92

order to make our workflow consistent. Although the
compression/decompression process may modify the
content of the image, we believe that the changes are
insignificant to d, especially in high frequencies. This
is particularly important to ensure that the exact same
measure of inpaintability is used on both the encoder’s
and decoder’s sides. In our experiments, we considered
that the encoding/transmission/decoding unit does not alter
the perceived quality of the blocks which are kept.

3) Processing order: The unknown regions are filled
from the outside in. Incomplete patches are sampled
randomly in I and only patches with at least 50% of known
pixels are considered for matching and filling.

4) Stitching: Stitching patches together helps giving a
sense of continuity between the recovered regions and the
rest of the image. First, the optimal seam between patches
is found via graphcut [9], then the overlap is fused in the
gradient domain via Poisson blending [18].

V. IMPLEMENTATION
A. Parameters

As previously mentioned, the parameter with the most
important influence on the appearance of the results
is the patch size. In our experiments, we computed
renderings for four square patch sizes: 15, 25, 35
and 45 pixels. All values produced visually pleasing
results, but with different levels of texture coherence
and semantic consistence. We found that state-of-the-art
no-reference image quality indices such as BRISQUE
[15] and inpainting quality indices such as BorSal [16]
perform poorly at selecting what we believe were the best
renderings, therefore we did the selection manually.

Parameter p defines the proportion of patches to be
removed, and consequently the size of the exemplar
(remaining patches). On images with textured background
and spatially sparse foreground such as those shown in
Figure 4, we observed that our method works best for
p < 15%, but this depends of course on the nature and
variety of textures in the scene. Larger values result in
both a smaller dictionary and larger regions to be filled
and consequently in a lower quality of inpainting.

B. Computational efficiency

As an indication of the computational efficiency of
our texture synthesis strategy, it takes about four minutes
for a 700x500 image with 10% of missing pixels,
with a patch size of 25x25 and with an unoptimized
Matlab implementation. Because of this, our scheme
is particularly intended for applications in which a
fast transmission or a small file size are more critical
requirements than decoding time.

VI. EXPERIMENTAL VALIDATION

We tested our method on 20 natural images from the
ImgSal database [11], selected for their textured content.
All images were 640x480 pixels of size with three color
channels. Figure 4 shows some of the most convincing
renderings. We carried out two subjective experiments in
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Figure 3.
the remainder, used to build the exemplar dictionary.

order to test our hypothesis that change the original and
restored images can be considered as visually equivalent.

A. First experiment

In a first study, 15 color-normal observers were asked
to spot differences between the original and reproduced
image shown one after the other. First an original image
was displayed for a duration of 5 seconds, then a 0.5
seconds blank screen and finally either exactly the same
image or a rendering (50% chance for each), for an
unlimited period. At this point, observers were asked
whether or not they saw or felt that there was a difference
between the two consecutively shown pictures. If so, they
were asked whether this difference seemed unnatural or
not. No indication was given as to the kind of image
differences to expect nor about the meaning of the word
unnatural. Two levels of rendering were used: p = 10% in
the first part of the experiment and p = 15% in the second
part. We classified the observer’s answers as follows: true
positive (change detected between two different images),
true negative (no change detected between two identical
images), false positive (change detected between two
identical images) and false negative (no change detected
between two different images). Among the cases in which
observers saw a difference, we counted the number of
times that they found it unnatural. Figure 5 shows the
results obtained.

150

150

100 100

50 50

0 =

TN TP TPU FN FP FPU

TN TP TPU FN FP FPU

Figure 5. Results from the first subjective experiment (left: first
sequence, right: second sequence): TN (true negative), TP (true positive),
TPU (true positive judged unnatural), FN (false negative), FP (false
positive) and FPU (false positive judged unnatural).

We used a two-sample binomial test [3] to evaluate
whether the probability for a true negative is significantly
different from that of a false negative (i.e., the probability

e i

. o

From left to right: original scene, blocks of low energy on CBy, foreground blocks (isolated by thresholding the saliency map [26]) and
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that people can actually perceive a difference between
original and rendered images). We found that, for the
first image sequence (p = 10%), there is no significant
difference between the two probabilities (with a 95%
confidence), whereas in the second image sequence (p =
15%) there is. During the experiment, time was monitored.
It took observers an average 5.4 seconds to answer the
first question in the first sequence, and 3.9 seconds in the
second sequence.

In addition to the fact there is a better chance for
people to observe changes for a higher p, we assume
that observers progressively moved from a naive to
a task-driven viewing, thus invalidating the bottom-up
saliency model used in our method as the experiment
went. It also justifies the shorter answer time in the second
session. Nevertheless, very few cases compelled observers
to rate a change as unnatural, and we even recorded
cases in which observers found the original image itself
unnatural. Note also that we found that no scene took a
significantly higher time for observers to judge than others.

B. Second experiment

A different group of 14 color-normal observers were
asked to rate the difference between original and restored
images. For each scene and for the same two p values as
previously, both images were shown next to each other and
observers were given three choices to rate the difference:
disturbing, acceptable or almost invisible. Again, we let
observers rely on their own interpretation of these words.
Additionally, they were specifically instructed to let the
operator know if they could not see any difference at all,
although it never happened. Again, time was monitored
and we measured that observers took an average 19.6
seconds to rate a pair of images in the first sequence
(p = 10%) and 11.6 seconds in the second sequence
(p = 15%). In total, observers found that the difference
was almost invisible in 30 % of the cases, acceptable in
52% of the cases and disturbing in 18% of the cases only.

These results therefore indicate that the rendered images
are, in a majority of the cases: 1) not noticeable at first
glance, 2) not disturbing once noticed. As previously
mentioned, the maximal amount of pixels that we were
able to alter while remaining natural is about 15%.

VII. CONCLUSIONS AND FUTURE WORK

This preliminary work demonstrated that change
blindness can be exploited to help data reduction



Figure 4. Examples of renderings for p = 15%. From left to right, column-wise: original, kept pixels (85%), restored images. Patch sizes - Bird:
15, Horses: 15, Red raft: 15, Flowers (blue): 25, Flower (yellow): 15, Red leaf 25.
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by introducing spatial redundancy without significantly
disturbing the user. We defined change blindness maps

and

a compliant texture synthesis method to identify,

remove and subsequently recover pixels subject to change
blindness. Unlike comparable methods, ours is particularly
intended for complex textures. We demonstrated via a
subjective experiment that up to 15% of such an image
can be altered in a way that is considered as natural and
acceptable. More investigations should be carried out in
order to determine the applicability of these findings for
a wider variety of images, in which case other inpainting
strategies should be tested as well.
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