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Abstract
For precision color matching, visual sensitivity to small

color difference is an essential factor. Small color differences
can be measured by the just noticeable difference (JND) ellipses.
The points on the ellipse represent colours that are just notica-
bly different from the colour of the centre point. Mathematically,
such an ellipse can be described by a positive definite quadratic
differential form, which is also known as the Riemannian met-
ric. In this paper, we propose a method which makes use of the
Riemannian metric and Jacobean transformations to transform
JND ellipses between different colour spaces. As an example,
we compute the JND ellipses of the CIELAB and CIELUV color
difference formulae in the xy chromaticity diagram. We also pro-
pose a measure for comparing the similarity of a pair of ellipses
and use that measure to compare the CIELAB and CIELUV el-
lipses to two previously established experimental sets of ellipses.
The proposed measure takes into account the size, shape and ori-
entation. The technique works by calculating the ratio of the area
of the intersection and the area of the union of a pair of ellipses.
The method developed can in principle be applied for comparing
the performance of any color difference formula and experimen-
tally obtained sets of colour discrimination ellipses.

Introduction
Color spaces and color difference metrics have been ac-

tive fields of research for many decades and it is still going on.

Among the many aspects, one important objective is to reduce

the gap between the visual perception of the color difference and

the mathematical model describing it. Since the establishment

of The International Commission on Illumination (CIE), many

colour difference formulae have been developed to measure the

visual color difference, but no single formula can be considered

a perfect one for all applications due to, among other things, the

curvilinear nature of the color space as pointed out by many pre-

vious researchers [2, 3, 4]. In the CIELAB and CIELUV sys-

tems, the color space is considered as a flat space and the color

difference in such a space is simply the Euclidean distance be-

tween points. In a Euclidean space, the distance between points

are straight lines and the advantage of such a space is simplicity

for calculating the color difference in practice. The disadvantage

of such a space is that color difference calculation or color dis-

tance does not agree sufficiently with the perceptually observed

color difference. For this reason, colour difference calculations

using CIELAB and CIELUV formulae between standards and

their matches have been a disputed issue with respect to the vi-

sual perception of the color difference [8, 10, 11]. Hence, it is

highly desirable to know how well CIELAB and CIELUV colour

difference formulae map the visual perception of the color differ-

ence.

For precision color matching, visual sensitivity to small

color difference is the essential factor. The first systematic stud-

ies of visual color matching precision in the different parts of

the tristimulus space were done by MacAdam[1], MacAdam and

Brown[4], but also by other researchers such as Wyszecki and

Fielder [6], Guild and Wright [9]. MacAdam pointed out that

small color difference can be measured by the just noticeable

differences (JND) through the discrimination ellipse which ulti-

mately manifests an observer’s precision of matching the chro-

maticity of the test color [1, 2]. These findings suggest that the

colour space is Riemannian where the small distance between

two points is described by a positive definite quadratic differ-

ential form, also known as the Riemannian metric. From this

positive definite metric, the discrimination ellipse is uniquely de-

termined and vice versa. Hence, considering the color space as

a Riemannian space the difference between two colors are de-

scribed by the line element which describe the colour percep-

tion properties of an observer from the measured discrimination

thresholds [2, 7, 14, 18].

Many current color science researchers suggest that the

color matching ellipses and the Riemannian metric still hold sig-

nificant role in the color perception or visual color difference and

can be applied in many practical cases where it is required to dis-

criminate small or medium color differences[11, 13, 14, 15, 16].

In these contexts, it is useful to study the performance of

CIELAB and CIELUV color difference formulae based on small

color distances. In other words, MacAdam’s approach to com-

pute the just noticeable difference (JND) or the discrimination

ellipse on the chromaticity diagram would be the reliable evalu-

ating tool to study the performance of different colour difference

formulae.

In this paper, the authors present a method of local linear

transform of the CIELAB and CIELUV colour difference met-

rics into the chromaticity diagram using the principle of the Rie-

mannian metric and Jacobean transformations. This is then used

to visualize the color differences predicted by the ΔEab and ΔEuv
colour difference metrics. In other words, the above mentioned

formulae from their respective color spaces are transformed into

the xyY space by the Riemaninan metric. Then, the correspond-

ing JND or the color matching ellipses are plotted into the chro-

maticity diagram. The principal axes (semi major axis and semi

minor axis) of the ellipse are calculated from the coefficients of

the metric tensor, gik. The ellipse corresponds to the chroma and

hue differences and can be considered as a tool for representing

an observer’s ability to determine perceptual color difference.

To test our method, We have used the visual colour match-

ing experimental data done by MacAdam [1] and Wyszecki and

Fielder [6]. MacAdam’s data set was prepared by the experi-

ment performed by a single observer. Wyszecki and Fielder’s

data set was prepared by the color matching matching experi-

ments done by three observers having extensive experience in

visual colorimetry. In this paper, we have used average of three

sets color matching data. Both these data sets are based on the

xyY colour space. CIELAB and CIELUV ellipses are computed

using these data sets. Then, computed CIELAB and CIELUV el-

lipses are compared with ellipses obtained from the experimental

data by two approaches. The first approach is to compare each
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pair of computed and observed ellipses by the size, the shape and

the orientation respectively. The second approach is to calculate

a single value comparison index of each set of ellipse by calcu-

lating the ratio of the intersection area to the union area of the

ellipses. The obtained results shows that this is a useful method

for comparing the performance of different color difference for-

mulae.

Riemannian Metric and the Ellipse Equation
In a Riemannian space, there exists a positive definite sym-

metric metric tensor called the Riemannian Metric. In general,

the metric tensor gik is a function that tells us how to compute the

infinitesimal distance between any two points in a given space.

So, considering the 2D color space as the Riemannian space, an

ellipse whose length is equal to the arc length of a curve between

two points is expressed by a differential quadratic form:

ds2 = g11 ·dx2 +2 ·g12 ·dx ·dy+g22 ·dy2 (1)

The matrix form of Equation (1) is

ds2 =
[
dx dy

] ·[g11 g12

g21 g22

]
·
[

dx
dy

]
(2)

where, ds is the distance between two points, dx is the difference

of x coordinates, dy is the difference of y coordinates and g11,

g12 and g22 are the coefficients of the metric tensor gik. Here, the

coefficient g12 is equal to the the coefficient g21. Mathematically,

it is written as :

gik =
[

g11 g12

g21 g22

]
(3)

The metric gik gives intrinsic properties of the color of a geo-

metric surface. Alternatively, it represents the chromaticity dif-

ference of any two colors measured along the geodesic of the

surface [2]. The coefficients of gik also determine an ellipse in

terms of its parameters a, b and θ defined as the semi major axis,

the semi minor axis and the angle of inclination in a geometric

plane respectively and vice versa. To determine the value of the

the coefficients gik in terms of the parameters of an ellipse, let

us consider the standard equation of an ellipse having center at

origin in a geometric plane in the matrix form as follows:

1 =
[
x y

] ·[ 1
a2 0

0 1
b2

]
·
[

x
y

]
= XT ·D ·X (4)

where X is a 2×1 vector and equals to [xy]T , the 2×2 diagonal

matrix D = Diag( 1
a2 , 1

b2 ) and the superscript T denotes the trans-

pose operation. The ellipse can be rotated in different orientation

by a 2×2 rotation matrix R expressed as :

R =
[

cosθ −sinθ
sinθ cosθ

]
(5)

The general transformation is Y = RX with inverse X = RTY .

Substituting this into Equation (4), we have :

Y T ·R ·D ·RT ·Y = 1 (6)

where, Y equals [x
′
y
′
]T , new axes after the rotation. Similarly,

the transformation matrix Mt equals R ·D ·RT . In the expanded

form, Equation (6)is

1 =
[
x
′

y
′][ 1

a2 cos2 θ + 1
b2 sin2 θ cosθ sinθ ( 1

a2 − 1
b2 )

cosθ sinθ ( 1
a2 − 1

b2 ) 1
a2 sin2 θ + 1

b2 cos2 θ

][
x
′

y
′

]

(7)

If we consider the value of ds in Equation (1) is constant and

compare with it Equation(7), the coefficients of gik can be related

to the parameters of an ellipse as follows:

g11 =
1

a2
cos2 θ +

1

b2
sin2 θ

g12 = cosθ sinθ (
1

a2
− 1

b2
)

g22 =
1

a2
sin2 θ +

1

b2
cos2 θ

(8)

The angle formed by the major axis with the positive x-axis is

given by

tan(2θ) =
2g12

(g11−g22)
(9)

The value of θ is ≤ 90◦ when g12 ≤ 0 otherwise θ is ≥ 90◦.
Similarly, the inverse of Equation(7) is written as:

1

a2
= g22 +g12 cotθ

1

b2
= g11−g12 cotθ

(10)

Alternatively, the semi major axis (a) and the semi minor axis

(b) of an ellipse can also be determined by the eigenvector and

eigenvalue of the metric gik. If λ1 and λ2 are eigenvalues of the

metric gik, the semi major axis (a) and the semi minor axis (b)

are equal to 1√
λ1

and 1√
λ2

respectively. [16]

Color Space Transformation
In order to compare the CIELAB and CIELUV colour dif-

ference formulae to the visual perception of the color differ-

ence, we compute the JND threshold ellipses of the CIELAB and

CIELUV color difference formulae. Since the experimentally

observed ellipses are based on the xyY space, it is necessary to

map color vectors of CIELAB and CIELUV colour spaces to the

xyY space by a Jacobean transformation. The mapping is done

in two steps: first mapping of colour vectors of the CIELAB and

the CIELUV spaces into the XYZ tristimulus space and then to

the xyY space.

CIELAB is defined as given below:

L∗ = 116

(
Y
Yr

) 1
3

−16

a∗ = 500

[(
X
Xr

) 1
3

−
(

Y
Yr

) 1
3

]

b∗ = 200

[(
Y
Yr

) 1
3

−
(

Z
Zr

) 1
3

]
(11)

where L∗, a∗ and b∗ corresponds to the Lightness, the redness-

greenness and the yellowness-blueness scales in the CIELAB

color space. Similarly, X , Y , Z and Xr, Yr, Zr are the tristimu-

las values of the color vectors and reference white respectively.

The color difference in the CIELAB colour space is

ΔE∗ab =
√

(ΔL∗)2 +(Δa∗)2 +(Δb∗)2 (12)

If we Take line element distance to measure the color difference

at a point in the color space, the Equation (12) becomes differen-

tial. In terms of the metric form, we can write

(dE∗ab)
2 =

[
dL∗ da∗ db∗

]⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦

⎡
⎣dL∗

da∗
db∗

⎤
⎦ (13)
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Now, to transfer or map color vectors L∗, a∗, b∗ into X , Y , Z tris-

timulas color space, we use the Jacobean transformation where

the variables of the two color spaces are related by the continuous

partial derivatives. By the chain rule, we have

⎡
⎣dL∗

da∗
db∗

⎤
⎦ =

⎡
⎢⎣

∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z

⎤
⎥⎦

⎡
⎣dX

dY
dZ

⎤
⎦ (14)

Again, from the equation 13 and 14, we have

(dE∗ab)
2 =

[
dXdY dZ

] ∂ (L,a∗,b∗)
∂ (X ,Y,Z)

T
I

∂ (L,a∗,b∗)
∂ (X ,Y,Z)

⎡
⎣dX

dY
dZ

⎤
⎦ (15)

where I is a 3 by 3 identity matrix and
∂ (L,a∗,b∗)
∂ (X ,Y,Z) is a Jacobian

matrix,⎡
⎢⎣

∂L
∂X

∂L
∂Y

∂L
∂Z

∂a
∂X

∂a
∂Y

∂a
∂Z

∂b
∂X

∂b
∂Y

∂b
∂Z

⎤
⎥⎦ =

⎡
⎢⎣ 0 116

3 Y
−2
3 0

500
3 X

−2
3

−500
3 Y

−2
3 0

0 200
3 Y

−2
3

−200
3 Z

−2
3

⎤
⎥⎦ (16)

Again, the relationship between X , Y and Z tristimulus colour

vectors and x, y and Y colour vectors are

X =
xY
y

Y = Y

Z =
(1− x− y)Y

y

(17)

Similarly, transformation from X , Y , Z tristimulus colour space

into x, y, Y colour space is done by another Jacobian matrix
∂ (X ,Y,Z)
∂ (x,y,Y ) and expressed as :

⎡
⎣dX

dY
dZ

⎤
⎦ =

⎡
⎢⎣

∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y

⎤
⎥⎦

⎡
⎣dx

dy
dY

⎤
⎦ (18)

where,
∂ (X ,Y,Z)
∂ (x,y,Y ) are

⎡
⎢⎣

∂X
∂x

∂X
∂y

∂X
∂Y

∂Y
∂x

∂Y
∂y

∂Y
∂Y

∂Z
∂x

∂Z
∂y

∂Z
∂Y

⎤
⎥⎦ =

⎡
⎢⎣

Y
y

−xY
y2

x
y

0 0 1
−Y
y

(x−1)Y
y2

1−x−y
y

⎤
⎥⎦ (19)

Finally, the transformation from of L∗, a∗, b∗ into x, y, Y
with two Jacobian matrices is

(dE∗ab)
2 =

[
dxdydY

] ∂ (X ,Y,Z)
∂ (x,y,Y )

T ∂ (L,a∗,b∗)
∂ (X ,Y,Z)

T
I

∂ (L,a∗,b∗)
∂ (X ,Y,Z)

∂ (X ,Y,Z)
∂ (x,y,Y )

⎡
⎣dx

dy
dY

⎤
⎦ (20)

Here, the whole transformation matrix is
∂ (X ,Y,Z)
∂ (x,y,Y )

T ∂ (L,a∗,b∗)
∂ (X ,Y,Z)

T
I ∂ (L,a∗,b∗)

∂ (X ,Y,Z)
∂ (X ,Y,Z)
∂ (x,y,Y ) and represents the

metric tensor of three dimensional color space. The coefficients

of the first two columns and rows of the 3D metric tensor gives

us the JND threshold ellipse in the chromaticity diagram.

By the same approach as described in Equations (12–20),

we can map CIELUV colour space into xyY colour space with

Figure 1: Illustration of the union and the intersection area of two

Ellipses.

the following standard formulae:

L∗ = 116

(
Y
Yr

) 1
3

−16

u∗ = 13L
[(

4X
X +15Y +3Z

)
−

(
4Xr

Xr +15Yr +3Zr

)]

v∗ = 13L
[(

9Y
X +15Y +3Z

)
−

(
9Yr

Xr +15Yr +3Zr

)]
(21)

Method of Comparison
Using the principles of union–intersection and ratio testing,

we present the method to compare two ellipses with respect to

their shape and orientation. Figure (1) shows two ellipses A and

B. The shaded area is the intersection area between them and

the total area of A and B is known as the union area. From the

statistical point of view, the acceptance region is the intersection

area and the rejection region is the union area. The ratio of these

intersection and union area gives us a nonnegative value less than

or equal to one. Large value of the ratio gives strong evidence

that the two ellipses are closely matched.

Result and Discussion
We have applied our method on visual experimental data

sets known as Macadam and three observer. Let us begin

from MacAdam’s data. In Figure(2), the subfigure (2(a)) shows

MacAdam’s color matching ellipses in the CIE chromaticity dia-

gram according to his visual experiment data. The next two sub-

figures (2(b)) and (2(c)) are the computed CIELAB and CIELUV

color matching ellipses obtained by the Jacobean transformation

of the Riemenian metric as described in the section two. The

color centers for these computed ellipses, at which color matches

are according to the MacAdam’s data. To do comparison with

experimentally obtained MacAdam’s ellipses, ellipses are com-

puted in xyY color space where the Y component (brightness)

is in the range [0.01.0] and plotted in the xy chromaticity dia-

gram. Here, ellipses are computed at L∗ = 70, and to achieve this

lightness value the Y component is approximated at 0.4 scale.

However, in our method the Y component of xyY can be scaled

at any value in the range between 0.0 to 1.0 which allows to

compare visual color difference at any lighting conditions. Ta-

ble 1 gives the calculated area (size), the ratio of semi major (a)

and semi minor (b) axes (shape) and the orientation in angle of

MacAdam, the CIELAB and CIELUV ellipses. Comparing with

area of MacAdam’s ellipses, it can be seen that the CIELAB and

CIELUV ellipses have general trends of agreement among dif-

ferent set of ellipses. For example, the blue is the smallest, the

green largest and that red, blue and yellow are more elongated
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Table 1: Calculated Area (Size), Ratio of major (a) and minor (b) axes (Shape) and Angle of orientation of MacAdam’s and computed

CIELAB and CIELUV ellipses.

Area of Ellipses ×log10 Ratio of major(a) and minor(b) axes Orientation in Angle(Degree)
MacAdam CIELAB CIELUV MacAdam CIELAB CIELUV MacAdam CIELAB CIELUV

-4.03 -3.96 -3.97 2.43 5.18 1.81 62.5 12.75 11.36
-3.42 -3.42 -3.45 4.00 3.12 1.54 77 23.17 16.95
-3.41 -3.38 -3.42 5.00 3.63 1.68 55.5 18.64 23.11
-2.16 -2.3 -2.24 4.17 2.10 1.83 105 85.74 89.08
-2.53 -2.61 -2.56 2.35 2.70 1.50 112.5 78.42 89.89
-2.38 -2.44 -2.4 2.52 1.76 1.61 100 75.1 80.45
-2.50 -2.53 -2.51 2.50 1.62 1.51 92 60.92 69.52
-2.64 -2.72 -2.7 2.00 2.31 1.21 110 67.53 78.84
-2.72 -2.68 -2.74 2.67 1.68 1.47 70 34 61.81
-2.78 -2.72 -2.76 3.67 1.09 1.83 104 44.53 22.22
-3.20 -3.11 -3.24 2.21 2.20 1.23 72 40.43 40.75
-3.06 -3.02 -3.16 3.44 2.12 1.31 58 39 50.77
-3.19 -3.01 -3.06 2.56 1.84 1.50 65.5 34.14 53.39
-2.72 -2.67 -2.92 2.38 1.40 1.76 51 5.16 49.13
-2.85 -2.76 -2.94 2.29 1.25 2.05 20 3.55 43.21
-2.97 -2.84 -3.03 2.00 1.43 2.30 28.5 18.74 41.2
-3.00 -2.80 -3.19 2.64 1.86 2.13 29.5 14.82 35.15
-3.04 -2.92 -3.40 2.00 2.50 2.44 13 4.32 36.38
-2.97 -2.96 -3.30 2.00 1.75 2.78 60 30.11 43.98
-3.19 -3.02 -3.18 2.56 2.04 1.64 47 22.01 37.65
-3.10 -3.09 -3.33 2.50 2.47 1.87 34.5 16.27 33.26
-3.08 -3.00 -3.49 2.95 3.07 2.20 57.5 30 36.56
-3.38 -3.21 -3.32 4.36 2.38 1.48 54 20.54 29.24
-3.26 -3.26 -3.31 4.83 3.18 1.70 86.74 86.69 94.83
-2.97 -3.04 -3.07 3.79 3.74 1.99 40 15.93 29.39

than others.

In Table 1, the comparative data of shape (the ratio of semi

major (a) and semi minor (b) axes) and the orientation between

MacAdam, CIELAB and CIELUV formulae show that there are

some disagreement with experimentally observed ellipses and

computed ellipses using the Riemenian metric. We can see in

Table 1 that CIELAB ellipses have higher values of a/b ratio

than CIELUV ellipses. Thus, they are more closer in shape than

CIELUV ellipses with respect to the observed MacAdam’s el-

lipses but neither ellipses fully comply with the original ones.

Similarly, with regard to the orientation, most of the ellipses are

inclined downwards compared to the MacAdam ellipses. The

computed ellipses are more circular than the MacAdam ellipses.

Similarly, comparing between computed CIELAB and

CIELUV ellipses with respect to the shape, it is found (Table 1)

that a/b ratio is significantly higher in most of the CIELAB el-

lipses than CIELUV ellipses of same color centers. This result

indicates that CIELUV ellipses are more circular than CIELAB

ellipses.

We also computed the ratio of the area of intersection and

the area of union between MacAdam’s ellipses and CIELAB and

CIELUV ellipses. Such ratio gives the correlation between com-

puted and original ellipses in terms of size, shape and orienta-

tion which is a more informative way for inter comparing the

different sets of ellipses by a single value or number. For ex-

ample, if the computed ellipse and the observed ellipse are same

in terms of size, shape and orientation, the ratio of the area of

intersection and the area of union is 1. This assures the full

compatibility between a pair of ellipses in terms of size, shape

and orientation. Table 2 gives the numerical values of such

comparison of CIELAB and CIELUV formulae with respect to

MacAdam. We have also done sign test for these ratio values of

CIELAB and CIELUV ellipses. The results actually shows that

CIELUV is performing better than CIELAB at a level of signifi-

canc p = 0.015.

Our second data set is the three observers color-matching

ellipses data. Here, the ellipse parameters are taken as the av-

erage of three sets of color-matching ellipses made by three ob-

servers. Figure (3(a)) shows the three observers color-matching

ellipses in the chromaticity diagram. Similarly, Figures (3(b))

and (3(c)) gives computed ellipses of CIELAB and CIELUV hav-

ing the same color centers of three observers color-matching el-

lipses respectively. Like for the MacAdam’s ellipses, the ellipses

are plotted at constant lightness , and we can see the similar-

ity between experimentally observed and computed ellipses from

our method described above. Table 3 shows comparative data of

area, shape and orientation between three observer ellipses and

computed CIELAB and CIELUV ellipses. The result shows a

similar behaviour as for the MacAdam data. The last table 4

gives the single value comparison index for each set of ellipses

by comparing the ratio of the area of intersection and the area of

union. In our second data set too, the sign test of the ratio of the

area of intersection and the area of union shows that CIELUV is

better than CIELAB with p = 0.0125.

Conclusion
We have developed a method to compare the behaviour of

colour difference metrics to experimentally observed JND el-

lipses. The method uses Jacobean to transform the Riemannian

metric tensor to the same colour space as the experimental data.

The presented method can compute JND ellipses of

CIELAB and CIELUV formulae in the chromaticity diagram and

thus gives the opportunity to evaluate how well they match the

visual colour difference obtained in experiments.

Such a pairs of ellipses are compared in terms of size, shape

and orientation to see the compatibility between computed and

observed ellipses. In our method, JND ellipses of CIE color dif-

ference formulae can be plotted at any value of lightness (L∗) in

the CIE xy diagram. This feature allows to compare the visual

colour difference in order to achieve the best possible match.

A pair of ellipses can be compared by using the ratio of

the area of intersection and the area of union. This gives the

single value index which represents three parameters of ellipse

to compare in terms of shape, size and orientation respectively.

The comparison between the computed CIELAB and

CIELUV ellipses with different visual data sets reveal out that
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(a) MacAdam Ellipses . (b) CIELAB Ellipses having same color cen-
ters as MacAdam .

(c) CIELUV Ellipses having same color cen-
ters as MacAdam.

Figure 2: MacAdam’s original and Computed CIELAB and CIELUV ellipses in the CIE31 Chromaticity diagram(Enlarged 10 times)

(a) Wyszecki Color-matching Ellipses (mean
of three sets of data) .

(b) CIELAB Ellipses having same color cen-
ters as Wyszecki Color-matching Ellipses.

(c) CIELUV Ellipses having same color cen-
ters as Wyszecki Color-matching Ellipses.

Figure 3: Wyszecki Color-matching ellipses and Computed CIELAB and CIELUV ellipses in the CIE31 Chromaticity diagram (En-

larged 5 times)

Table 3: Calculated Area(size), Ratio of major(a) and minor(b) axes(Shape) and Angle of orientation of 3 observers and computed

CIELAB and CIELUV ellipses.

Area of Ellipses ×log10 Ratio of major(a) and minor(b) axes Angle of orientation (Degree)
3 observers CIELAB CIELUV 3 observers CIELAB CIELUV 3 observers CIELAB CIELUV

-4.348 -4.922 -4.948 2.95 1.34 2.08 35 61.1 51.2
-4.557 -4.781 -4.907 2.72 1.18 1.8 48 30.6 56.7
-4.227 -4.903 -5.156 3.57 1.49 2.16 179 11.2 44.2
-4.706 -4.801 -5.049 1.74 1.69 1.52 63 41.9 55.2
-4.278 -4.921 -4.837 2.14 1.49 1.99 50 50.6 56.3
-4.532 -4.855 -5.144 1.63 1.61 1.94 5 21.6 46.1
-4.649 -4.834 -5.132 2.47 1.7 1.74 34 29.1 48.2
-4.697 -4.919 -5.165 1.6 1.98 1.29 59 46.5 51.6
-4.525 -4.925 -5.273 2.63 2.09 1.6 54 29.5 43.3
-4.935 -4.981 -5.304 3.7 2.16 1.44 65 33.4 41.6
-4.479 -5.028 -5.272 1.83 2.1 1.24 73 44.2 41.4
-4.056 -5.086 -5.223 3.57 1.53 2.61 179 71.9 40.2
-4.302 -4.751 -4.865 3 1.23 1.72 72 45.6 60.5
-4.833 -4.915 -5.198 3.25 1.98 1.38 70 40.3 48.2
-4.838 -4.858 -5.155 2.36 1.86 1.52 60 36.6 49.6
-4.852 -4.833 -5.12 2.29 1.78 1.56 50 36.3 50.8
-4.697 -4.886 -5.188 2.5 1.94 1.48 57 36.7 48.2
-4.787 -4.83 -5.109 3.08 1.78 1.53 59 38.2 51.8
-3.865 -4.765 -4.715 4.52 1.11 1.78 76 16 66.6
-4.313 -4.721 -4.807 4.78 1.37 1.62 77 59.1 66.6
-4.117 -4.904 -5.026 3.33 1.27 2.11 21 80.2 48.4
-4.01 -5.015 -5.099 2.27 1.46 2.35 8 66.8 44.5

-4.223 -4.744 -4.892 2.43 1.63 1.49 82 56.5 66.2
-4.416 -4.788 -5.012 3.05 1.45 1.73 36 33.7 53.4
-4.043 -4.954 -5.254 2.11 1.66 2.33 8 10 40.7
-4.492 -4.794 -5.011 1.64 1.73 1.44 103 48.7 59.6
-4.108 -4.9 -5.233 2.15 1.78 2.07 14 18.3 42.5
-4.251 -4.901 -5.264 1.46 1.99 1.86 40 23.6 42.7
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Table 2: Ratio of area intersection and Union of Ellipses with

respect to MacAdam Ellipses

CIELAB CIELUV
0.29 0.47
0.25 0.33
0.28 0.35
0.34 0.5
0.48 0.65
0.57 0.6
0.58 0.54
0.49 0.55
0.59 0.6
0.41 0.61
0.4 0.52
0.44 0.47
0.35 0.66
0.59 0.62
0.55 0.81
0.68 0.63
0.64 0.64
0.69 0.44
0.83 0.47
0.4 0.68
0.52 0.59
0.59 0.39
0.32 0.46
0.31 0.38
0.39 0.24

Table 4: Ratio of area intersection and Union of Ellipses with

respect to 3 observer ellipses

CIELAB CIELUV
0.4 0.58
0.26 0.36
0.56 0.38
0.2 0.35
0.47 0.58
0.33 0.54
0.26 0.52
0.27 0.47
0.4 0.69
0.16 0.34
0.55 0.72
0.51 0.32
0.4 0.53
0.19 0.36
0.17 0.32
0.16 0.3
0.25 0.49
0.17 0.32
0.4 0.52
0.34 0.41
0.51 0.49
0.56 0.43
0.51 0.65
0.37 0.55
0.77 0.38
0.32 0.52
0.88 0.46
0.7 0.62

neither formulae is good enough for the perfect visual color

matching. However, the ratio test method shows that CIELUV

performs better than CIELAB to predict visual colour differ-

ence for both of the data sets tested. The general trend of color

matching ellipses of CIE color difference formulae (CIELAB

and CIELUV) are along the direction to experimentally obtained

ellipses.

Finally, by our method we can transform any colour space

to other colour space and vice versa, preserving the property of

their original colour space and can be extended to our future work

to study advanced colour difference formula like ΔE00.
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