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Improving the robustness to image scale of the total variation of
difference metric

Marius Pedersen and Ivar Farup

Abstract— Objective image quality assessment has received
a lot of attention in the last decades, and it is still an unsolved
challenge. One of the problems with many existing image
quality metrics is that they suffer from scale differences, i.e.
images have been rated similar by observers but according to
the image quality metrics the images are different. We propose
a normalization step as a solution to this problem for one of the
state-of-the-art metrics, the Total Variation of Difference (TVD)
metric. The normalization is similar to Michelson contrast,
and experimental results show that the proposed normalization
significantly increases the performance of the TVD metric.

I. INTRODUCTION

Objective image quality assessment has been an active
area of research for many decades[1], [2]. These objective
image quality metrics have the goal of being correlated with
perceptual image quality. However, the search for an image
quality metric correlated with the percept is still on-going.

One direction that several researchers have taken to
achieve image quality metrics predicting perceived image
quality is to develop models that simulate the human visual
system [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], and
use these models as a pre-filtering stage to image quality
estimation. It has been shown that image quality metrics
incorporating models of the human visual system are more
robust than those who do not [13].

Pedersen et al. [10] proposed in 2011 a metric based
on perceptual contrast filtering. The method was based on
previous work by Peli [14] on contrast filtering and color
total variation [15]. The contrast filtering was further refined
through the use of wavelets by Pedersen and Farup [16].
However, wavelets are not good at representing discontinu-
ities, which are common in natural images. Therefore, Ped-
ersen et al. [17] extended the filtering by replacing wavelets
with contourlets. In 2014 Pedersen [18] proposed the last
enhancement to the filtering method by using shearlets,
which provided the most accurate filtering compared to the
other methods. The filtering was used in the Total Variation
of Difference (TVD) metric, and it showed improved perfor-
mance over metric without simulation of the human visual
system. The TVD metric also has the advantage of being
possible to optimize, so that it can be used to enhance image
quality for different applications, such as image compression
and denoising.

Many metrics today, including TVD, suffers from image
scale differences [19], [20], [21], [1], [22], [18], [21]. Scale
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differences occur because images have been rated similar
by observers but according to the image quality metrics the
images are different. This results in many metrics having a
low performance when evaluated on entire databases, but in
fact they might perform well for one single image (i.e. one
original with different distortions) or for a single distortion
(i.e. different original images with the same distortion).
It is therefore wanted to have a metric that is robust to
scale differences, which is the focus of this paper. We
propose a normalization step for image quality metrics, more
specifically the TVD metric, to make the metric more robust
to scale differences. Increased robustness should also lead to
an increased performance of the image quality metric.

The paper is organized as follows; first relevant back-
ground, then we introduce the proposed normalization to deal
with image scale differences, followed by the experimental
evaluation. Results are presented next, before the conclusion
and future work.

II. BACKGROUND

The TVD metric follows a general framework for low-
level based image quality metrics, where the original and
reproduction is transformed into a suitable color space,
before the images are filtered to simulate the human visual
system, the difference between the original and reproduction
is calculated, and at last the quality values are pooled into a
single value.

A. Color space transformation

The original and reproduction are transformed to the Ybr
color space. Starting with a sSRGB input image, which is
linearized to remove the gamma correction, and further trans-
formed to CIEXYZ. The next step consists of transforming
from CIEXYZ to a new RGB space, where the primaries
are defined to match the wavelengths of the monochromatic
gratings used in the measurements of the chromatic contrast
senstivity functions [23]. Red is defined as 602 nm, green is
defined as 526 nm, and blue is defined as 470 nm. Finally,
the last transformation is from the new RGB space to Ybr:
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where R,G, and B are the new linear RGB values, Y,,Y,,
and Y, are the y values from the color matching functions
for the red, green, and blue channels, such that Y is the CIE
luminance. The color channels are defined as:
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With the images transformed into this color space we
can apply the contrast sensitivity functions directly, since
the channel contrasts correspond to the contrast definitions
used in the measurement of the chromatic contrast sensitivity
functions. Also, the channels in Y br are decorrelated.

B. Simulation of the human visual system

In order to simulate the human visual system, the work
by Peli [14] is adopted. The image is decomposed and the
contrast between the bandpass and lowpass information is
found. The decomposition is carried out using shearlets [24],
and is done for each color channel. Pedersen [18] suggested
to decompose the images at four scales, with 2, 3, and 4
shear levels, and standard parameters otherwise. We use the
same parameters. The decomposition results in a set of low
pass filtered coefficients (LL), and many sets of highpass
coefficients from different levels, shearings, and cones. The
highpass coefficients are filtered with contrast sensitivity
functions; a luminance contrast sensitivity function is applied
to the achromatic channel (Y) and chrominance contrast
sensitivity functions to the chromatic channels (b and r).
Since shearlets are divided into different orientations, the
luminance contrast sensitivity function from [25] that include
orientation dependence and surround illumination was used:

CSFL (M) =
Cexp (70.0016142 (1+ 100/L)°~°8)
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where C is set to 3700, u is the spatial frequency in cycles
per degree, L is the luminance in cd/m?, and X is the
angular object area in square degrees, and ¢ is the orientation
angle in degrees. f is a multiplicative correction factor used
to account for that the visibility of an object can change
depending of the surround [25]:
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where L is the luminance of the object, L; is the surround
luminance, and Xg is the object area in square degrees of
visual angle.

For the chrominance contrast sensitivity function the func-
tions from Johnson and Fairchild [4] is applied, one for the
red-green channel and one for the blue-yellow channel:

CSFc = oy exp(—Bru?) + oz exp(—Bou™?), “

where u is defined as cycles per degree and the parameters for
the red-green and blue-yellow channels are the same as used
by Johnson and Fairchild [4], which are found in Table I.
The luminance contrast sensitivity function (CSFy) is ap-
plied to the luminance channel (Y), and the chrominance con-
trast sensitivity functions (CSF¢) are applied to the chromi-
nance channels (b and r) for each level, cone, and shearing.
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TABLE 1
PARAMETERS FOR THE CHROMINANCE CONTRAST SENSITIVITY
FUNCTIONS FROM JOHNSON AND FAIRCHILD [4].

Parameter | red-green channel | blue-yellow channel
o 109.14130 7.032845
B -0.00038 -0.000004
Y 3.42436 4.258205
O 93.59711 40.690950
B2 -0.00367 -0.103909
T2 2.16771 1.648658

The contrast sensitivity functions are not normalized, and
therefore applied directly at the given scale.

We denote /(x,y) as the contrast filtered LL band and
hyj(x,y) denote the highpass bands at level ;j for shearing
v and cone T. LL is not filtered at the lowest level N, and
therefore Iy (x,y) = In(x,y). aycj(x,y) denotes the contrast
sensitivity filtered version of /yj(x,y). The contrast filtered
octave bands are defined as follows:

h/

\vrj(x )= {h\yrj(xvy) if ayj(x,y) > l}(x,y) )

“]o else

Then the filtered information in y shears (i.e. orientations)
and T cones enables the reconstruction of the image for
the lowpass filtered version at the next level. In addition,
the TVD metric incorporates contrast masking by using an
extended intra channel masking model accounting for local
activity [26]. This model accounts for the effect that the
detectability of one stimulus is influenced by the presence
of another stimulus.

C. Quality calculation and pooling

After simulation of the human visual system, the original
and reproduction are converted to the log-compressed OSA-
UCS color space [27], which is proven to correlate well with
calculated differences [28]. The final quality calculation is
calculated using the following equation:

2
TVD = 2 (/Q | VLo, — VLg; | dA)
J

M/Q /g(Loj —Lg;)?dA,

where \/ Yi(Jo | VLo, —VLg, | dA)? is the color total vari-

ation term, while A [ /3 ;(Lo; — Lg;)?dA is the color dif-
ference term. Lo is the original filtered image and Ly the
filtered reproduction. Q is the image domain, A is the
weighting parameter for the color difference term, and j
denotes the color channel. The first term is similar to the
color total variation defined by Blomgren and Chan [15],
except that the gradient of the difference between the original
and reproduction is taken. For the second term, this is the
Euclidean color difference.

(6)
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III. PROPOSED APPROACH TO DEAL WITH IMAGE SCALE
DIFFERENCES

As mentioned above image scale differences is a problem
for many image quality metrics. We propose a modification
to the TVD metric in order to make it more robust against
scale differences. We will focus on the total variation cal-
culation of the TVD metric (first term in Equation 6), and
compare our proposed metric to the total variation calculation
of TVD (hereafter denoted as TVD-TV). Normalization of
the quality calculation is an approach to deal with scale
differences, and we propose to normalize the total variation
by the gradient of the sum of the images.

Our normalization is similar to Michelson contrast [29],
where the gradient of the difference is divided by the sum
of the gradients of the original and reproduction. The final
TVD calculation is the following:

2
dA) @)

5 (],

The proposed approach also has the advantage of being
possible to minimize, and can therefore be used in many
different applications to optimize quality, such as for image
compression, denoising, halftoning, or gamut mapping.

|VLO] VLR |

TVD-TV-Norm =
| VLo, I VLR |

IV. EXPERIMENTAL SETUP

We calculate the TVD-TV-Norm with the proposed nor-
malization (Equation (7)) and TVD-TV without the nor-
malization (First term in Equation (6)) on on the Colour
Image Database:Image Quality (CID:1Q) [30], [31]. CID:IQ
contains 23 original images (Figure (1)), all which have
been modified with six distortions; JPEG2000 compression,
JPEG compression, blur, Poisson noise, AE gamut mapping,
and SGCK gamut mapping. The original images modified
with these distortions in five levels from low quality to high
quality. 17 observers participated in the experiment, which
was carried out at two viewing distances; 50 cm and 100
cm. The level of ambient illumination in the experiment was
approximately 4 lux. The chromaticity of the white displayed
on the color monitor was D65 and luminance level of the
monitor was 80 cd /m?>. All settings are suitable for the SRGB
color space. The controlled conditions of the subjective
experiments allow accurate simulation of the human visual
system, which is a core component of the TVD metric.

A. Performance measures

The performance of each metric is calculated as the cor-
relation between subjective scores and the values calculated
by the metric. We have used two standard types of corre-
lation. The Pearson’s correlation coefficient, which assumes
a normal distribution in the uncertainty of the data values
and that the variables are ordinal. The Spearman’s rank-
correlation coefficient, which is a non-parametric measure
of association based on the ranks of the data values, that
describes the relationship between the variables without
making any assumptions about the frequency distribution.
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Fig. 1.
over 5 levels with six different distortions (JPEG compression, JPEG2000
compression, Gaussian blur, Poisson noise, AE gamut mapping, and SGCK
gamut mapping.

Images in CID:IQ. The 23 original images have been distorted

The relationship between the metrics and subjective scores
are not necessarily linear. Therefore, we investigate the cor-
relation using non-linear regression by applying a mapping
function [32]:

f(x)zel(%— 1

1 4 92(x—63) ®)

) + 04X + 05,
where 0;, i =1,2,3,4, and 5 are the parameters to be fitted.
Initial parameters for the fitting are max(subjective scores),
min(subjective scores), median(metric scores),0.1, and 0.1.
95% confidence intervals are calculated using Fisher’s z
transformation [33].

V. RESULTS

The results for non-linear Pearson correlation can be seen
in Figure 2 for 50 cm viewing distance, and in Figure 3
for 100 cm viewing distance. For 50 cm viewing distance
(Figure 2) the proposed TVD-TV-Norm is statistically sig-
nificantly better in four out of six distortions given the 95%
confidence interval, and have similar performance in the two
other distortions. For the full database the proposed TVD-
TV-Norm is statistically significantly better than TVD-TV.
Similar results are found for 100 cm (Figure 3), where the
proposed TVD-TV-Norm is statistically significantly better in
three out of six distortions, and have similar performance in
the two other distortions. For the full database the proposed
TVD-TV-Norm is statistically significantly better than TVD-
TV.

The results for Spearman correlation can be seen in
Figure 4 for 50 cm viewing distance, and in Figure 5 for
100 cm viewing distance. For three of the six distortions the
proposed TVD-TV-Norm is statistically significantly better
than TVD-TYV, in the other three distortions it has comparable
performance. For the full database the proposed method is
significantly better. For 100 cm viewing distance the results
are similar to 50 cm, with significantly better performance in
three distortions and better performance for the full database.
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Pearson correlation values with a 95% confidence interval for single distortions and full database. Viewing distance:50 cm

TVD-TV-Norm
TVD-TV
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Non-linear Pearson Correlation

Fig. 2. Non-linear Pearson correlation values for single distortions and full database for the proposed TVD-TV-Norm and the previous TVD-TV for 50
cm viewing distance. The proposed metric is statistically significantly better in four out of six distortions (JPEG, Poisson noise, DeltaE gamut mapping,
and SGCK gamut mapping), and have similar performance in the two other distortions (JPEG2000 and Gaussian blur). For the full database the proposed
TVD-TV-Norm is statistically significantly better than TVD-TV. The errorbars indicate the 95% confidence interval.

Pearson correlation values with a 95% confidence interval for single distortions and full database. Viewing distance:100 cm
1 I I I I I I

Pearson Correlation

Fig. 3. Non-linear Pearson correlation values for single distortions and full database for the proposed TVD-TV-Norm and the previous TVD-TV for 100
cm viewing distance. The proposed metric is statistically significantly better in three out of six distortions, and have similar performance in the two other
distortions. For the full database the proposed TVD-TV-Norm is statistically significantly better than TVD-TV. The errorbars indicate the 95% confidence
interval.
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Spearman correlation values with a 95% confidence interval for single distortions and full database. Viewing distance:50 cm
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Fig. 4. Spearman correlation values for single distortions and full database for the proposed TVD-TV-Norm and the previous TVD-TV for 50 cm viewing
distance. The proposed TVD-TV-Norm is significantly better than TVD-TV in three of the six distortions, and significanly better for the full database. The
errorbars indicate the 95% confidence interval.

Spearman correlation values with a 95% confidence interval for single distortions and full database. Viewing distance:100 cm
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Fig. 5. Spearman correlation values for single distortions and full database for the proposed TVD-TV-Norm and the previous TVD-TV for 100 cm viewing
distance. The proposed TVD-TV-Norm is significantly better than TVD-TV in three of the six distortions, and significanly better for the full database. The
errorbars indicate the 95% confidence interval.
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Overall, the proposed TVD-TV-Norm has a more stable
performance (similar correlation coefficients) for the differ-
ent distortions than TVD-TV. Also, for the full database
for both 50 cm and 100 cm viewing distance we see that
the proposed TVD-TV-Norm has a better distribution in
the regression plot. This is also confirmed by the increased
correlation values. This indicates that the normalization step
results in better robustness to scale differences.

VI. CONCLUSIONS

We have proposed a normalization step to make the Total
Variation of Difference (TVD) image qualtiy metric more
robust to scale differences. The proposed approach, named
TVD-TV-Norm, is evaluated on the CID:IQ database, and the
results show that it is more robust to scale differences. The
performance of TVD-TV-Norm is also significantly better
or similar to the previous metric. For the full database, the
normalization step produces significantly better results.

Future work includes evaluation of TVD-TV-Norm against
other image quality metrics. Since the proposed metric can
be optimized, we also plan to use it to enhance image
quality in different applications, such as image compression
or denoising.
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