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Abstract

The Retinex algorithm originally presented by Land and Mu€ases random paths to explore
the image. Throughout the decades, many versions of thadXetilgorithm have been proposed,
mainly differing in the way they explore the image, with e@ndom paths, random samples, convo-
lution masks, and variational formulations. In this papez,propose a step back towards the origin,
replacing random paths by traces of specialized ants swaere,called termites. In presenting the
spatial characteristics of the proposed method we disdtfssathces in path exploration with other
Retinex implementations. Two experiments on nine imag#s 20 observers have been carried out
and the results indicate an higher preference of our proépddarespect to the original ones and a
previous implementation of Retinex.

1 Introduction

During the past decades a great amount of research has beemdamesstanding human visual percep-
tion, which is not a trivial task as the Human Visual System (HVS) has conagpléxobust mechanisms
to acquire useful informations from the environment. In particular, ther@gdpearance of an area is in-
fluenced by the chromatic content of the other areas of the scene. Vbfspsysiological phenomenon
is referred as locality of color perception.

Different image processing methods and frameworks attempted to deal vétityiat image appear-
ance and to exhibit behaviors similar to HVS, such as ACE [30], iCAM [281 the various Retinex
implementations, which are the interest of this work.

In the original Retinex, proposed by Land and McCannl[20, 21] thditgad perception is achieved
by long paths scanning across the image, accounting for pixel ratio cotoputaeach chromatic chan-
nel. The scientific community has continued to be interested in this model andidavapplications,
as reported in[24, 23]. Different implementations and analysis followest Hfis first work and these
can be divided into three major groups, which differ in the way they achimadity.

The first group explores the image using paths or extracting random picelad the pixel of interest
or computing ratio with neighbors in a multilevel frameworkI[L2] 22,29, 13jlevthe second group
instead computes values over the image with convolution masks or weightingceisteY 1]. The
third group, recently born, uses differential mathematical techniquesdb@s Poisson-equation-type
and variational approaches [18/ 26].

Recent implementations, constructed to investigate the effects of diff@atidlssamplings, replaces
paths with random sprays, i.e. two-dimensional point distributions acressnige, hence the name
"Random Spray Retinex” (RSR) [28]. In a follow-up, Kl et al.[[19] developed the "Spatio-Temporal
Retinex-like Envelope with Stochastic Sampling” (STRESS) framework, evtiexr random sprays are
used to calculate two envelope functions representing the local reéepélighter and darker points. All
these algorithms need an high density of samples in order to lower the amaurisefbut they never
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sample the whole image in order to keep the local effect. Furthermore the nofmssmpling points
needed increases drastically when increasing the image size and camtbeqilso the computational
time.

In this work we start from the random path approach of the first groygarticular the Brownian
motions models [22, 25]. Here, the idea of the paths is implemented using anantifoxel inspired
from a biological process: th&nt Colony SysterfACS) model proposed by Dorigo et al. in 1991 [8]
for the Travelling Salesman Problem

Inspired by the behavior of the ants in food foraging, Dorigo et al. ldgesl in 1991 the so called
Ant Colony SysterfACS) for solving the well-knowrTravelling Salesman ProblegTSP) [8,[5], fol-
lowed by some improvements [7]. Since its development and especially aftgiotieer workThe Ant
Colony Optimization Meta-HeuristidCO) [6], more than hundreds of papers on ACO can be found in
literature, several for solving other combinatorial optimization problems am# $or extension to other
fields [11,[3]. For an extensive and detailed description of ACO and ffication in combinatorial
optimization problems, we address the reader to Dorigo aiiizI8tbook [9].

ACO has touched also the field of image processing,i.e. segmentation [Zjfickon [33], and
edge detection [16] showing particular robustness against noise.

In this work we propose a new implementation of Retinex, following the firstgr@pproach, in
particular substituting the Brownian paths with ant colony investigation of theamage rest of this
paper will be organized as follows: Sectldn 2 briefly recalls the ACS sydtiowed by our proposal in
Sectior B. Sectionl4 presents the method of evaluation and next the resyitesented and discussed
in Sectiorb. Finally, in sectidd 6 conclusions are drawn.

2 Ant Colony System M odel

The Ant Colony SysterfACS) model proposed by Dorigo et al. in 1991 [8, 5] is able to converge
to the optimal solution of instances of tAeavelling Salesman ProblefTSP), an NP-hard problem
in combinatorial optimization and theoretical computer science, where gilish @f cities and their
pairwise distances, the task is to find a shortest possible tour that visitgigaekactly once. Optimal
results with short computational time are shown when cities are on a plane patth &edge) exists
between each pair of cities (i.e., the TSP graph is completely connected).

Three ideas from natural ant behavior are transferred to the art#itiaolony:

1. The preference for paths with a high pheromone level,
2. The higher rate of growth of the amount of pheromone on shorter,paths
3. The trail mediated communication among ants.

An artificial antk in city r chooses the citgto move to among those which do not belong to its working
memoryMy by applying the following probabilistic formula|[8]:

(109)* (M) -
_ ) o)™ jf gt M)
pk(r,S): Zugsz(Tr,U)a(reru)B ¢ K Q)

0 otherwise

whereTt,, is the amount of pheromone trail on edgeu), n, . is a heuristic function called visibility,
which is the inverse of the distance between citiesdu and,a andf are parameters that allow a user
to control the importance of the trail versus the visibility.
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3 Termite Retinex

Before introducing our model, we recall also the basic idea of Brownidim&e[22], where Relative
channel lightnesf.) at a point is the mean value of the relative channel lightnegesomputed along
N random paths from pointto the pointi (Figure[1):

N (i)
Li_ Xhl\illlh 2)

| = 5 (X*l) ©)
" xeu;\th Ix

wherel is the lightness intensity of the pixel h is indicating the path and represents the reset mecha-
nism as described in detail in [23].

where

=1
=2
h=1
i h=2
h=N h=3
N L=

Figure 1:N random paths from pointto the point.

Here we propose an implementation of Retinex following the mechanisms dekalibee but with
the novelty of replacing the Brownian paths with an ant colony investigations irhorder to create the
so calledTermite RetineXTR), the ant colony system needs some maodifications, which consists in the
following assumptions and constraints:

1. Pixels are considered cities: a termite can choose to move only on one8ofidighboring pixels
(no jumps).

2. Preference for a brighter pixel: the visibilityis substituted with the bilateral distanceefined
below, that we will refer taloseness

3. Preference for paths with a lggoisonlevel (we want divergence), in order to explore different
areas of the image: the poison level is the inverse of the amount of pheeoﬁl@n%.

So in our modified model an artificial termiken pixel r chooses the pixedto move to among those
which do not belong to its working memony by applying the following probabilistic formula:

(697 (cr5)” -
S if s¢ Mg andse N
o(1,8) = { BP0 F M ° (@)

0 otherwise
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where6; , is the amount of poison on pixel ¢, is the bilateral distance between pixelandu and,a
andp are parameters which weight the importance of the poison versus theadgsarhich is directly
related to the brightness of the pixel. In case all the surrounding pixetsthavsame probability, one
pixel is drawn randomly with uniform probabilityM list contains the pixels that have already been
visited by thek, ant. The bilateral distanag,, is defined as follows:

_ detdy

Cru VG (52)
de = /(0% — )2+ (% — Vo) (5b)
dv =1 (%, yr) — 1 (Xu, Yu)| (5¢)

whered, andd, are the distance in coordinates and in intensity values respectiveijze image channel
and(x,y) are the coordinates of the pixels.

In daily life, termites are also known as “white ants” and as this model attemptsgan exploration
in search of the reference local white, from that the ndereite Retinex

4 Algorithm Characteristics

4.1 Tuning of the Parameters

In the TSP problem, all the meta-heuristics attempt to find the optimal solution. firettieof spatial
color algorithms (SCA)I31, 23], the optimal solution depends on the tasledlitiorithm and it is still
subject of research. In the work that we are presenting the goal @iftdrang is a qualitative emulation
of the HVS for an unsupervised image enhancement. Thus severdbgsearise for the choice of the
parameters:

1. How many termite& do we need to properly explore the image?
2. How far should a termite travel (number of pix&lsindicating the length of the path)?
3. Which values should andf3 assume to make the termites explore the image properly?

4. How much poisorf should be added once a termite has visited a pixel in order to enforce the
divergence of the paths?

Previous studies of investigation of the parameters [32] and indicate thétdaecalculation of
each pixel a particular configuration with 500 termit&s=500) visiting 500 pixels s = 500) with
a = 0.1 andB = 0.9 are in line with observers preference. This configuration comes ot & set of
pre-tests and an experiment with eight images and 20 observers degitgingde intent to investigate
the importance of the poison in respect to the closeness and as corsegoanto direct the termite
swarm [32]. Results have shown a higher observer preferent@soralues ofa and high values of.
We emphasize the fact that settiong= 0.1 andB = 0.9 means that the poisdhhas very low importance
while the closenesshas very high importance and this causes a termite to easily choose a brigéter p
even if it has been previously visited by another termite, resulting in this way iremildanges of the
original overall contrast. While the number of termites can be constant, ththlehthe path should be
chosen according to the image size and in particular a termite should nevierabtite points because
we are interested in finding a local reference white and not the global wftite image. For the poison
we have chosen to use the unit quanéity: 1 and leave the enforce of the divergence of paths for future
work.
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4.2 Computational Complexity

The computational complexity of th&nt Colony Systemproposed in 1991 8] i©(NC- n®), whereNC
is the number of ant cycles amds the number of cities in a istance of the TSP problem. Although its
higher computational complexity the ACS reaches the optimal solution of the fidbiem in a shorter
computational time than other heuristicsl[14]. In our case the ant cycleienessary because we do not
need to converge to an optimal solution and furthermore at each pixehpetation each termite does
not have to touch all the pixels. As consequence the computational compiéHity Termite Retineis
given by:

O(k-Ns-n) (6)

wherek is the number termite$\s is the number of pixel (length of the path) visited by a termite and
in this case is the number of pixels in the image. The TR follows the same computatomalexity of
other SCAs, such as RSR or STRESS which have a computational complegitiNoeM - n), whereN

is the number of iterationd/ is the number of samples ands the number of pixels in the image. On
the other hand regarding the computational time of TR, implemented in Matlab witlptimization,
can be slower than other SCAs which have been optimized i.e. in CUDA.

5 Test Resultsand Discussion

In order to evaluate the quality of the TR, two experiments with users havedagged out. A set of
nine images, shown in Figuré 2, chosen following the recommendations i ®] were evaluated in a
pairwise comparison on neutral grey background by a total of 20 wdserrecruited from the computer
science field with most of them having knowledge of image processing.

In the first experiment each image processed with TR was compared to itebvidpile in the second
experiment each image was compared to the one processed with RSR. Batiments were performed
in uncontrolled environments as suggested from Zuffi et al. [34] andrebss were asked to choose the
image based on their overall preference; no indication of any image quttfityuge were given to the
partecipants [27]. While the first experiment has been designed with thn aftevaluating the efficacy
of the method the second experiment has been designed with the purphssiag the reconsidered
path-based approach of TR against a most recent spray-basedanas RSR.

Figure[3 shows the preference of the 20 observers on the tested inoagkes &xperiment and we
can clearly see that TR succeeds on all the images with three of them witfeeepiee equal to 100%.
A sign-test at 95% confident interval shows that TR is significantly betgar the original.

Figurel4 shows the overall preference of the 20 observers for tomdexperiment, where TR was
compared to RSR. TR is preferred for all the nine tested images, exceptfaw with Image 5. Only
Image 4 has a noticeable preference of 100%. A sign-test at 95% enoéidnterval shows that TR is
significantly better than RSR.

Examples of images processed with RSR with respect to TR are shown ire[Bigurorder to lower
as much as possible the amount of noise, all the images were processed®itisiRg 1000 iterations
(N =1000) and 4000 sample®i(= 4000), which require longer computational time with respect to TR,
using the same implementation language and no optimization techniques. For detdits we refer to
the reader to Section and {0 [28] 19].

Since Retinex is a white patch algorithm[23], TR follows the same behaviorbiigktest color in
the image is mapped to white and this is performed locally, in a way that is edgeyngs Furthermore
like other SCAs[31], TR performs a content driven histogram flattenivg.consequence TR is able
to perform color correction as shown in Figlile 6, where the red conmpamdalanced, and dynamic
enhancement as shown in Figlie 7, where the overall visibilty is reabvere
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(b) Image 2

(e) Image 5 () Image 6

(g9) Image 7 (h) Image 8 - (i) Image 9

Figure 2: The nine original images chosen for the two experiments.

In conclusion we can candidate TR as new path-based Retinex with theufartiovelty of swarm
intelligence behavior, which yields in several advantages with respeptag-based approaches, which
have leaded lately.

6 Conclusion

We have developed a novel implementation of Retinex, reconsidering thefiteapaths and taking an
existing artificial model inspired from a biological process. This new #lgornamedTermite Retinex
(TR) has marveled from the modification of tAat Colony SysterfACS) model proposed by Dorigo
et al. in 1991[[8]. In this case the purpose of TR is not the optimization of smmstraints but an
eager exploration of the image content, tuned in particular by two parametarsd 3 which weight

the importance of the so called “poison” and of the so called “closenes#fowing suggestions from
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Figure 3: First experiment results: observers preference of TR w#pect to its original on the nine
tested images.

previous studies, indicating that giving very low importance to the poisoegnhigh importance to the
closeness which causes a termite swarm investigating a particular regionrofige to find the local
reference white, we have carried out two experiments in order to evaheatgiality of TR. A set of nine
images processed with TR were evaluated by 20 observers, first in desoipwith the original and then
with a previously developed implementation of Retinex. Results confirm thaeffaf the method with
higher observers preference in both experiments and a sign-testat@¥ident interval confirms this
statement.

Future works will focus on different open issues: extending TR to agdonut mapping and color-
to-grey, automatic retrieval of the parameterand 8 and the length of the path based on the image
content.
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