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Abstract. Several techniques for the computation of gamut bound-
aries have been presented in the past. In this article we take an
in-depth look at some of the gamut boundary descriptors used when
performing today’s gamut mapping algorithms. We present a
method for evaluating the mismatch introduced when using a de-
scriptor to approximate the boundary of a device gamut. First, a
visually verified reference gamut boundary is created by triangulat-
ing the gamut surface using a device profile or a device character-
ization model. The different gamut boundary descriptor techniques
are then used to construct gamut boundaries based on several sets
of simulated measurement data from the device. These boundaries
are then compared against the reference gamut by utilizing a novel
voxel based approach. Results from experiments using several
gamut boundary descriptors are presented and analyzed statisti-
cally. The modified convex hull algorithm proposed by
Balasubramian and Dalal performs well for all the different data
sets. © 2010 Society for Imaging Science and technology.
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INTRODUCTION
The construction of a gamut boundary descriptor (GBD) is
the first step in the process of performing gamut mapping.
While there has been extensive' research done on the perfor-
mance of gamut mapping algorithms (GMAs), little has
been done to compare the performance and validity of the
commonly used GBDs. Since many of the GMAs depend on
finding the intersection between lines and a gamut bound-
ary, any inaccuracies introduced by using a GBD that fails to
accurately represent the gamut boundary result in errors
later in the gamut mapping process. If the GBD overesti-
mates the gamut volume in some areas of the color space,
the GMA may result in colors that are still not reproducible
on the output device. Similarly, gamut underestimation leads
to unnecessary image gamut compression, leaving parts of
the destination gamut unused. GMAs that utilize both the
source and the destination gamut may further magnify the
problem, since both gamut boundaries may contain errors.
Although exact determination of the gamut boundary is
important to the result of any GMA, different GBDs have
been used seemingly arbitrarily by different researchers.
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Similarly, for gamut metrics like, e.g., the gamut volume, the
method used for determining the GBD is often left unmen-
tioned and the results are thus hardly comparable. No sys-
tematic comparison of existing methods for determining the
GBD is known to the authors.

The purpose of the present work is to provide a thor-
ough comparison of the most commonly used methods for
determining the GBD. The methods are first described and
discussed in terms of algorithmic complexity, feasibility of
the resulting geometric structure and specific implementa-
tion issues. Then, the algorithms are compared with respect
to how accurately they are able to reproduce the surface of
known gamuts from different data sets extracted from the
gamuts and for different choices of algorithm parameters. It
turns out that there is great variability of the performance of
the algorithms, particularly for the most sparse data sets.

BACKGROUND AND STATE-OF-THE-ART

There are several known approaches for determining the
GBD. Some depend on knowledge concerning the character-
istics of a device, and are therefore only applicable to device
gamuts of the specific device type. These methods construct
a device model, and the gamut boundary follows from
physical limits of the device, e.g., ink coverage. Approaches
based on analytical models are clearly unsuitable for color
sets that do not follow such constraints, while other methods
for gamut boundary computation may be used also to de-
termine the gamut boundary of images. Such methods usu-
ally require measured data sets as input, in the form of col-
ors (points) in a color space.

Model based methods

MacAdam” presented an early attempt at a model based
gamut. An approximation of the gamut was found by as-
suming box-shaped colorant reflectance and calculating
CIEXYZ tristimulus values. The gamut of a printing system
can also be determined by using the Kubelka-Munk® equa-
tions, as shown by Meyer et al.*” in 1993. Mahy used the
Neugebauer® equations to calculate the gamut of a multi-ink
printing system.”

Inui® introduced an algorithm for the computation of
printer based color gamuts, using an assumed correspon-
dence between color space and dye amount space. Herzog
introduced an analytical mathematical description of color
gamuts called gamulyts,”"" where the gamut is represented
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by a deformed cube. By using a set of distortion functions, a
cube is deformed to fit the color gamut. An extension of this
model can also be applied to systems with more than three
colorants.

Point based methods

It is possible to obtain a device gamut easily by assuming
that the gamut boundary of a device is preserved between
device dependent and device independent color spaces. A
simple approximation of the gamut can be found by mea-
suring the colors that make up the extreme points of the
gamut. Stone et al."' proposed that the gamut can be repre-
sented by planes connecting these extreme points.

In order to represent the gamut more accurately, Bolte'
performed a direct triangulation of measured colors found
by printing patches that make up a regular structure in the
device color space. One of the problems with this approach
is that characteristics of the printing process and the color
space transformation can lead to the order of the tetrahedra
vertices being reversed, and internal points in the device
color space structure may thus end up outside the triangles
that form the surface of the regular structure when con-
verted to CIELAB. This method can be further improved by
enforcing a check for mirrored tetrahedra in the device in-
dependent color space, and testing for points on the outside
of the elements that make up the surface of the regular
structure.>'*

If the data measurements do not follow any structure, it
is still possible to determine the gamut boundary by apply-
ing one of several geometric algorithms to find the surface of
the points. The convex hull of the measurement data can be
found by using, e.g., the quickhull" algorithm. This results
in a convex approximation of the gamut,"” and has been
used to find gamuts from ICC profiles.'® The main problem
with this approach is that device gamuts usually have some
concave sides. If the data originates from a reasonably well-
behaved printer, it is possible to compute the convex hull in
a linearized dye density space,’” where the points are as-
sumed to be more convex.

Balasubramian and Dalal'® presented an improvement
of the standard convex hull method. By introducing a non-
linear method as a preprocessing step before the convex hull
is found, the gamut surface is given the ability to follow
concavities in the original data set.

A different approach to gamut determination is to find
maximum chroma for cells having a specific lightness and
hue. By imposing a regular grid structure on these points,
triangulation can result in a gamut surface,’”* commonly
referred to as a “mountain range.” Segment maxima’' is a
related method that performs a subdivision of the color
space into segments based on the polar coordinates of the
colors. The segment maxima technique has also been ap-
plied to image data,”>*’ where the mass center can be used
as the origin of the spherical coordinate system.

Cholewo and Love™ used alpha shapes™ to find the
gamut boundary of both devices and images. The alpha pa-
rameter controls the level of details of the computed shape,
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and Cholewo and Love suggest that the optimal « should be
found by interactively changing the shape.

Giesen et al.”® proposed the use of a discrete flow com-
plex to compute image gamuts. By using a grid representing
the relevant part of the color space, and computing the dis-
tance to the nearest sample in the point data, a discrete
three-dimensional (3D) map of the color space can be
found. By comparing the grid value at a certain grid position
to its neighbors, a flow is established. Traversal of this struc-
ture then decides which grid points are considered part of
the gamut.

THE ALGORITHMS

While many GBDs have been suggested for use in, e.g., color
gamut mapping, few are in use today. We will study the
performance of some commonly used GBDs, as well as some
that have been shown to have advantages when compared
with these algorithms. We limit our investigation to algo-
rithms that can be applied to any type of generic color data
in a three-dimensional opponent color space, thereby ex-
cluding model-based algorithms. The convex hull is used by
many when computation of gamut volumes is desired, al-
though the algorithm is known to overestimate the gamut
volume. Bala’s modified convex hull represents a great im-
provement over the standard convex hull, but is not as well
known. The segment maxima GBD is found in the reference
implementation of gamut mapping algorithms distributed
by the CIE. The alpha shapes algorithm is utilized in many
fields for finding the shape of a set of points, but is not
commonly used to find color gamuts. The alpha parameter
needs to be decided, and there is no standard method for
doing this. We will also investigate further the performance
of the uniform segment visualization method suggested by
Bakke et al.”’ that has recently been proposed as an alterna-
tive to the segment maxima algorithm.

We have implemented the different methods for con-
structing the gamut boundaries using the 1cc3p” applica-
tion as a basic framework for the comparisons. This tool can
visualize a variety of GBDs, allowing visual verification of
our results. Its modular architecture is particularly suited for
implementation of new algorithms.

Convex hull

The convex hull of a set of points X is the smallest convex set
containing X. Any point in space that can be defined as a
convex linear combination of the points defining the convex
set, i.e., a linear combination with weights greater than or
equal to 0 and sum equal to 1, is a part of the convex hull of
the data set.

The convex hull of a set of colors is often used as an
approximation of a color gamut. The convex hull can be
found using, e.g., the quickhull algorithm. The availability of
this algorithm in tools commonly used for data analysis is
likely to be one of the main factors advocating its use. The
algorithm has also been in use for a relatively long time, an
its properties are well known. The expected complexity of
the algorithm is O[N log(N)], but it has a maximum limit of
O(N?) The convex hull is guaranteed to contain all of the
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Figure 1. A gamut surface found by using the GBD proposed by
Balasubramian and Dalal.

data points, which is an important advantage when compar-
ing it to other GBDs.

However, the convex hull overestimates the volume of
gamuts. Color gamuts in perceptual color spaces generally
have concave surfaces that the convex hull algorithm does
not detect.

Modified convex hull

The modified convex hull algorithm is based on the im-
provements suggested by Balasubramian and Dalal,' result-
ing in surfaces similar to the one illustrated in Figure I.
Before the convex hull is computed, new vertex coordinates
P’ are calculated from the original position p using a gamma
function based on the distance to the color space center ¢,
and a parameter, 7.

o -

p=lp-d” +¢. (1)

p-d

By using a y between 0 and 1, the data are made more
convex before the convex hull algorithm is applied. A 7y value
of 1 does not alter the data, and is equivalent to a standard
convex hull, while values closer to 0 move all colors closer to
the surface of a sphere. By increasing the convexity of the
data, points close to the convex surface are made part of the
surface. The result is a gamut boundary that more closely
follows the perceived surface of the data set, including con-
cavities. However, if the data set contains internal points, the
choice of a smaller y increases the probability that these
points are added to the surface.

When applying the modified convex hull algorithm to a
data set consisting of surface colors in order to construct a
surface composed of polygons, it might seem obvious that
using a very small y is the best solution, since this ensures
that all the points are made part of the surface. However,
there are two important considerations that make such an
assumption false:

(i) The surface may fold in on itself since the curvature
of the gamut surface can cause lines between the chosen
center point and the gamut surface to cross the gamut
boundary twice before the final intersection with the gamut
surface. This creates the possibility that points are made part
of the surface structure in the wrong place, making the
gamut surface appear jagged with artificial holes.
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Figure 2. The effect of the y parameter on the construction of gamuts
using the modified convex hull algorithm. (a)The use of a small y value in
the pre-processing step has caused artifacts in the surface. (b) A slightly
larger y results in a surface without arfifacts.

(ii) While a very small vy value ensures that all of the
surface points are part of the resulting surface, the operation
may lead to the inclusion of a set of erroneous edges that
replace edges that should be part of the surface. This can
typically be seen most clearly along edges between the pri-
mary and secondary color corners of the gamut, where the y
expansion can lead to notches in the gamut surface. Figures
2(a) and 2(b) illustrate this effect.

Convex hull in CIEXYZ

Device gamut measurements generally do not constitute
completely convex objects in CIELAB or related color spaces.
Guyler™ proposed that the convex hull algorithm be per-
formed in CIEXYZ, and the resulting surface transformed to
the desired color space. Guyler argued that color data tend to
be more convex in the CIEXYZ space, and that this approach
thus results in a better approximation.

First, the data points are converted from their original
color space to CIEXYZ. The convex hull of these vertex co-
ordinates is computed and represented by a list of facets, and
the connectivity and vertex information of these facets is
used to construct a surface in the original color space by
replacing the CIEXYZ coordinates with the original data.

Segment maxima

The segment maxima GBD is provided in the sample imple-
mentation of GMAs provided by the CIE technical commit-
tee on gamut mapping (TC 8-03), making it a highly rel-
evant basis for comparison. Segment maxima divides the
color space into a number of segments around a center
point. Each segment represents a uniform interval of spheri-
cal coordinates (polar and azimuth). For each segment, the
color with the largest radius from the color space or gamut
center is stored. These points can then be triangulated by
taking advantage of the structure created by the use of uni-
form intervals.
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Segment maxima, while theoretically a simple and
straightforward algorithm, is not easily implemented in a
way that provides optimal results. The basic algorithm is fast
since it takes time linearly proportional to the number of
input points, and requires little storage. All that is required is
the coordinates of the colors with the largest radius per seg-
ment. However, the possibility of empty segments (segments
that do not contain any measurement colors) generates the
need for an interpolation algorithm. The source code pro-
vided by Morovi¢, available from the CIE Division 8 home
page, provides a reference implementation of segment
maxima as well as an intricate interpolation function. In this
study, we have followed this implementation closely. Good
interpolation is necessary to avoid artificial concavities
caused by a mismatch between the uniform segment divi-
sion and the data measurements. The creation of the surface
triangles from the extreme points also result in added com-
plexity since there are a number of special cases that need to
be handled when triangulating the surface:

(i) The extreme points of four neighboring segments
form a surface element consisting of a four-sided, nonplanar
polygon. This can be divided into triangles in two different
ways, depending on the choice of diagonal. However, due to
the positioning of the points, sometimes one of the triangu-
lations results in a triangle that faces inwards when viewed
from the outside toward the gamut center, as illustrated by
Figure 3(a). Implementations of the segment maxima GBD
that create a surface structure consisting of triangles should
avoid this folding of the gamut surface by selecting the other
diagonal when such problems are detected. This results in
the triangles in Fig. 3(b), where the dotted diagonal line
correctly identifies a shared internal edge.

(ii) The bottom and the top of the gamut need special
considerations when constructing a surface from the ex-
treme points. This can be solved by adding an artificial top
or bottom point, calculated from the surrounding data
points. Alternatively, it is possible to perform a two-
dimensional (2D) triangulation of the neighboring points
based on their position in the plane perpendicular to the
L-axis (or equivalent).

Alpha Shapes

Edelsbrunner and Miicke” presented a technique for calcu-
lating approximations to shapes of a set of points in 3D.
These approximations, named alpha shapes, are constructed
from a 3D Delaunay triangulation of the point set, using a
parameter « to determine which tetrahedra, triangles, edges,
and points are part of the shape. The simplices having points
such that there exists a sphere with a radius less than or
equal to a containing these points are part of the specified
alpha shape. When applied to measurement data, a should
be large enough to ensure that the shape consists of one
single part made up of interconnected simplices.
Computationally, the complexity of the algorithm is defined
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Figure 3. The two different friangulations of segment maxima points. The
incorrect friangulation results in overlapping friangles. (a) Incorrect trian-
gulation. (b) Correct triangulation.

by the Delaunay triangulation in n dimensions, which is
equivalent to finding the convex hull of the same number of
points in n+1 dimensions.

Uniform Segment Visualization

The uniform segment visualization” method is an attempt
to combine the modified convex hull algorithm with a
segment-based preprocessing step to reduce the number of
points used to define the gamut surface. First, the color
space is divided into segments using a sphere tesselation
technique to create segments having a more uniform size
than existing algorithms. Similar to segment maxima, for
each segment the point with the largest radius is kept for
further processing. The modified convex hull algorithm is
used to construct a surface from these points.

EXPERIMENTAL METHOD

In order to perform objective evaluations of the perfor-
mance of GBDs using our method, it is necessary to be able
to construct a reference surface that contains all the data
points and follows the data set closely. This surface can then
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Table 1. The device profiles used for generating fest data.

Device Device type
PAL/SECAM RGB Generic
ColorMatch RGB Generic
Adobe RGB (1998) Generic
Apple RGB Generic
Best RGB Generic
Bruce RGB Generic
Wide Gamut RGB Generic
NTSC RGB Generic
Philips 202P4 Monitor
Apple Studio Display 217 Monitor
Sony STYLEPRO CPD-E240/8 Monitor
Hitachi CM821FET Monitor
NEC MultiSync LCD19706X Monitor
Sony (PD-E530 Monitor
Canon iPF8000 Printer
Canon iPF5000 Printer
Epson Stylus Pro 10600 Printer
Epson Stylus Pro 4880 Printer
Epson Stylus Photo R2400 Printer

be used when analyzing the performance of each algorithm.
We base our method on the use of device data and gamuts.
The advantage of this approach is that these data sets, unlike
images, have an internal structure that can be utilized in the
creation of the reference gamut surface. We restrict the
choice of devices to device types whose color spaces have
three components, thereby further simplifying the task of
constructing such a reference surface. Simulated data from a
number of different RGB and CMY based devices can then
be used to ensure the general validity of the results.

We have performed an evaluation of the performance of
several different GBDs, using several different parameters
and a selection of different data sets.

Devices and profiles

Nineteen ICC profiles were used as the basis for the experi-
ment, providing the means to create the simulated measure-
ment data. In order to test the performance of the algo-
rithms on data from different devices, three different types of
profiles have been included, as can be seen in Table I. The
generic profiles include RGB working spaces like Adobe
RGB. The monitor profiles include an assortment of moni-
tor profiles, while the printer profiles include profiles for
some Canon and Epson printers. All device profiles are ge-
neric profiles provided by the manufacturers.

All profiles have a three-component device color space,
while only the printer profiles contain 3D lookup tables. We
utilize a color management module (CMM) with the relative
colorimetric option to generate simulated data points by
converting colors from the device color space to CIELAB.
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Data Sets

In order to evaluate the methods for construction of gamut
boundary descriptors, each method is then applied to a va-
riety of simulated data sets extracted from the given device
gamut, and the resulting gamuts are compared against the
reference. We use these general types of data sets:

(1) Data sets consisting of surface points. These data sets
can be constructed using uniform sampling of each of the
six sides of the color cube, eliminating shared points along
the edges that have already been added to the set.

(i) Data sets that in addition to surface points also in-
clude interior gamut points, typically found by utilizing uni-
form sampling along each of the three axes of the device
color space.

(iii) Data sets based on standard test charts, e.g., TC 2.83
and TC 9.18 RGB test charts.

The effect of different measurement data was simulated
by using the ICC profiles to transform data from the device
color space to CIEXYZ values. The generated data points
should all be on the inside of the device gamut and the data
sets represent possible alternative bases for generating the
gamut surfaces.

Metric/Baseline Truth GBD

The first step in our proposed method for GBD evaluation
consists of constructing a reference gamut boundary for
each of the devices that are to be part of the experiment.
This surface is constructed by performing a dense sampling
of the six sides of the three-dimensional RGB/CMY cube in
the device color space, followed by transforming these data
into the CIELAB color space.'” The resulting points are then
triangulated, creating a surface that closely follows the per-
fect gamut boundary of the device. It is necessary to inspect
this surface to make sure that the devices do not exhibit
behavior that causes this method to fail."»"* We have visually
confirmed that the reference gamut of each device encloses
all possible colors of that profile.

The surfaces can be evaluated by comparing a number
of attributes against the reference surface. One such attribute
is the gamut volume, which can be used as an indicator of,
e.g., gamut overestimation. However, while the existence of a
volume difference is indicative of a difference in the gamut
boundaries, the opposite is not necessarily the case. There
are obviously an infinite number of gamuts that may have
the same volume, but whose surfaces are not equal.

This suggests the use of an alternative metric. The error
introduced by a gamut boundary descriptor refers to the
difference between the space contained by the GBD surface
and the reference gamut. We introduce the concept of rela-
tive gamut mismatch, which refers to this difference volume
(parts of the color space that are contained within exactly
one of the gamuts and not the other) divided by the volume
of the reference gamut,
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Figure 4. The voxels that represent the mismatch between 2 gamuts.

V(G1 \ Gref) + V(Gref\ G1)
- V(Gref)

When comparing gamuts, it can be necessary to deter-
mine the union, intersection, and the difference between the
two objects. In order to perform this operation fast, as well
as independently of the structure of different GBDs, we em-
ploy a voxel based technique. Every gamut is represented by
a 3D grid of binary values, where each value indicates
whether the associated volume in the color space lies within
the gamut boundary. The grid dimensions are chosen to take
into account the perceptual scale along each axis, using the
same subdivision as demonstrated by Giesen et al.”® in
CIELAB. The advantage of this data type is that each voxel
only requires one bit of memory storage, and the difference
between gamuts can be found easily by using an xor opera-
tion on the bits that represent two gamuts. Figure 4 displays
the voxels that are the result of such an operation. This
eliminates the need to compute the intersection of tetrahe-
dra to compare the gamuts, and allows comparisons between
gamuts represented by different structures. The construction
of the grid depends only on a simple inside/outside test for
each GBD type, and can thus be optimized by traversal of
the gamut structure.

)

T

Choice of Algorithm Parameters

The classical convex hull and the convex hull in CIEXYZ are
able to construct a surface without setting any additional
parameters. When using the modified convex hull algorithm,
some parameters for the preprocessing step can change the
resulting gamut. First, one needs to decide on a center point
that is used to calculate the radius of the points. We use the
center of the CIELAB color space (50, 0, 0) as this point. The
v parameter defines the amount of nonlinear correction of
the radius, in effect deciding the amount of concavities in
the gamut surface. We include results from gamuts calcu-
lated using 0.05, 0.2, and 0.5 as the value of 7.

The alpha shapes algorithm defines a series of shapes,
while the choice of alpha determines the final gamut. If
a=», the alpha shape will be equal to the convex hull, while
a=0 results in just the disconnected input points. When
applied to device measurement data, we only need to decide
the minimum and maximum values of alpha for which each
tetrahedron of the Delaunay triangulation should be in-
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cluded in the gamut object. Disconnected triangles, edges,
and points are unsuitable for most gamut applications (e.g.,
gamut mapping).

Some optimization algorithms have been proposed for
selecting a suitable alpha value, e.g., by finding the alpha
which results in the largest connected group of tetrahedra
without holes.** However, testing the connectivity of a graph
built from the edge information of the tetrahedron structure
is potentially slow. The graph state may switch back and
forth between full connectivity and disconnected parts as the
alpha value decreases, making it difficult to optimize the
search for the correct alpha. Testing also shows that using
this optimized alpha value is problematic, as the resulting
gamut and the reference gamut can be quite different for
some data sets. Based on this test, as well as empirical data
showing that the convex hull is relatively consistent in its
overestimation of the gamut volume, we choose the greatest
alpha value satisfying the condition that the resulting alpha
shape has a volume equal to or less than 90% of the convex
hull. We refer to this algorithm as AS10% in the following
figures, meaning alpha shape where 10% of the volume has
been removed from the starting point of @=%. Due to al-
gorithm complexity and running time, we have not been
able to calculate the alpha shapes for all the data sets.

The segment maxima algorithm depends on the selec-
tion of a center point. We use the color space center in our
calculations, similar to our choice for the modified convex
hull. We use 8, 12, and 16 subdivisions of the angles around
this center point.

Data Analysis

Many methods that are currently in use for analyzing results
depend on assumptions about the distributions of the un-
derlying data. These assumptions, e.g., that results can be
approximated using the normal distribution, and that algo-
rithms have the same variance, cannot be made for GBD
algorithms. In order to avoid this we have utilized statistical
methods that do not make any assumptions about the dis-
tributions. We have used box plots to display the experimen-
tal data. By using this technique, we utilize the data directly
and do not depend on the data following a specific statistical
model. The plots show the median value as well as the upper
and lower quartiles of the grouped data. The full range of
the data is also plotted, along with any identified outliers.

We then use the sign test to test if there is a statistically
significant difference between the performance of the algo-
rithms. The nonparametric property of this test allows us to
compute statistics without making any assumptions regard-
ing the distribution of the results of the algorithms. The
pairing of data points compensates for the difference in per-
formance between the data sets and results in detection of
significant differences even when plots of combined results
do not appear to show any significant difference between
algorithms.

While the performance of the algorithms can vary
greatly, the probabilities derived from the sign test do not
show the magnitude of the differences. Several algorithms
have problems when they are applied to certain types of
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Figure 5. Overall results grouped by algorithm, device and data set. We
see that the choice of dafa set and algorithm influences the accuracy of
the constructed gamut boundaries. The algorithms perform slightly worse
when used on data from printers than the other device types. (a) The
performance of the GBD algorithms for all data sets. (b) The performance
of all algorithms for each device. (c) The performance of all algorithms for
the different data sefs.

data, while the sign test does not put any more weight to
these results than to minor differences. Although the sign
test can detect statistically significant differences in many
situations, the box plot might reveal that the actual practical
difference between the two algorithms is small.
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Figure 6. Results of the algorithms for the different types of data sefs. (a)
The performance of the algorithms for data sets containing surface points.
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points. (c) The performance of the algorithms for data sets from actual
color charts.

RESULTS AND DISCUSSION

Overall Results

We have computed a total of 4047 gamut boundaries that
have been compared with reference gamuts. The overall re-
sults for the different algorithms are presented in Figure
5(a). We see that the average performance and the variance
of the algorithms vary greatly. While some algorithms gen-
erally perform well for almost all types of input, others do
not give a satisfactory result for certain data sets. The convex
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0.2. (d) Modified convex

suitable for arbitrary data sets. The convex hull in CIEXYZ

has a very small median mismatch, but the range of the
results is relatively high. The segment maxima algorithm
does not perform well. Although the average accuracy is
improved when a higher number of segments is used, the

without improving the median mismatch, making it less
variance increases dramatically.

0.5. (c) Modified convex hull with gamma
050502-8

0.2 gives both a

()

0.05. (e) Convex hull computed in the CIEXZ color space. (f) Alpha shapes.

Figure 7. The performance of convex hull based algorithms for the different types of data sets (a) Convex hull.

(b) Modified convex hull with gamma

hull with gamma
0.5. Using an even smaller 7y increases the variation

close to 10%. The alpha shapes method performs better, but

it is not as good as the most accurate algorithms. The modi-
fied convex hull algorithm generally results in accurate

gamut boundaries. We see that using 7y
better median gamut mismatch as well as a smaller variance

hull algorithm consistently overestimates the gamut size by
than y

J. Imaging Sci. Technol.
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(d)

Figure 8. The performance of segment based algorithms for the different types of data sets. (a) Segment
maxima with 8 X 8 subdivisions. (b) Segment maxima with 12X 12 subdivisions. (c) Segment maxima with
16X 16 subdivisions. (d) Uniform segment visualization.

Figure 9. The segment maxima GBD.

Figure 5(b) shows that the performance of the algo-
rithms is mostly independent of the device. However, the
accuracy of the computed gamuts seems to be slightly worse
for the printer profiles compared to the other profiles. Al-
though the gamuts computed for data from printer profiles
on average have a higher error than for the two other
groups, the large in-class variance seen by grouping the re-
sults by the device type make it difficult to draw any clear
conclusions. This tendency is in part caused by higher varia-
tion in sample density in CIELAB for printer profiles when
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the device color space is sampled uniformly. Also, the printer
gamuts have a more irregular shape than the other device
types based on simpler device models.

When we group the data by the different data sets, we
see that the accuracy of the gamuts increases with a higher
number of simulated measurement points, up to a certain
limit where adding additional input points does not improve
the performance of the algorithms. Clearly, a dense sampling
of the gamut surface is preferable. Figure 5(c) also shows
that using data sets containing only surface points reduces
the number of points necessary to achieve a given level of
gamut accuracy, e.g., 3752 surface points gives about the
same results as using 19 683 points computed from a uni-
form subdivision of the device color space.

Algorithm Performance for the Different Data Sets

The selection of measurements used to calculate color gam-
uts is important, as we can see from the significant differ-
ences in gamut mismatch between algorithms applied to dif-
ferent types of measurement data in Figure 6. The inclusion
of measurements within the gamut may reduce the accuracy
of the resulting gamut since the GBDs, with the exception of
conventional convex hull, may include some of the internal
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Table I1. A comparison of the gamut mismatch of the algorithms when used on data from the standard TC 9.18 test target. If the table cell contains >, this indicates that the gamut
mismaich of the algorithm in the row is worse than the algorithm in the column, while < indicates that the opposite relationship is true. A single > or < is used when the
corresponding p-value is less than 0.05, while > and < indicate an even more significant p-value of less than 0.01

] (HO.5 (HO.2 (H 0.05 (H CIEXYZ SM 8 SM 12 SM 16 usv
(H > > > > > > >
(H0.5 < > < < < < >
(H0.2 < < < < < < <
(H0.05 < > > < < < >
(H CIEXYZ < < < <
SM 8 < > > > > > >
SM 12 < > > > > < < >
SM 16 > > > > > >
usv < < > < < < <

points in the final gamut surface. It is therefore possible to
optimize the performance of the GBD by selecting measure-
ments specifically for the task of gamut boundary determi-
nation.

In the case of previously measured test charts
[Fig. 6(c)], we see that the segment maxima algorithm does
not perform well with such a small number of data points
when internal points are included. It can be advantageous to
apply a device characterization model, and use this to create
artificial surface points. However, this approach will fail in
cases where internal points in the device color space are part
of the surface in CIELAB or a similar color space. Even if the
transform from device color space to CIELAB does not dis-
tort the relationship between the positions of the data, it is
still not possible to perform a straightforward trianglulation
of the surface points for all devices. In particular, it is not
possible to specify only surface points covering the entire
CIELAB gamut of devices having a color space with more
than three components, e.g., CMYK printers.

Individual Algorithm Performance

Figures 7 and 8 show the performance of the individual
algorithms grouped by data set. The conventional convex
hull technique overestimates the volume by a significant
amount, but can be useful to identify colors that are guar-
anteed to be on the outside of the gamut boundary (given
that the convex hull is based on a representative sampling of
the device color space).

Results from the experiment, along with empirical evi-
dence, suggest that the modified convex hull algorithm per-
forms well on a wide variety of measurement data, assuming
that the y parameter is set to a sensible value. The results
show that a choice of 0.2 as the value of vy gives accurate
gamut boundaries for the data sets that have been tested.
The modified convex hull algorithm shows a very stable per-
formance, generally requiring few data points to generate an
accurate gamut.

Computing the convex hull in the CIEXYZ color space
results in a very small median gamut mismatch, but the
results vary greatly. The somewhat unusual distribution of

J. Imaging Sci. Technol.

050502-10

the results of the CIEXYZ convex hull algorithm can be
explained by the convex nature of the gamuts of our monitor
and generic device profiles in CIEXYZ. The large variance
indicates that this algorithm does not work well for the
printer gamuts because of their concavities in this color
space. In fact, the algorithm performs worse than the normal
convex hull in the case of the tested printer gamuts.

The alpha shapes algorithm does not perform as well as
the modified convex hull. This algorithm has not been tested
on the data sets containing a high number of points due to
the computational complexity of the Delaunay triangulation.
The alpha shapes algorithm also has the disadvantage that it
is not as easy to implement as some of the better performing
algorithms.

The segment maxima algorithm performs well on mea-
surement data consisting of densely sampled surface points,
where the use of a higher number of segments increases the
quality of the gamut boundary without the risk of adding
internal points. Additionally, this method results in a limited
number of extreme points that can easily be specified by
changing the number of segments, which is particularly
suited to inclusion in file formats where size is important.
One of the issues with the segment maxima GBD is that the
surface points are positioned much closer together near the
top and the bottom of the gamut, as seen in Figure 9. This is
caused by the uniform subdivision of the spherical coordi-
nate space into segments, and results in a need for additional
sample points near the device white and black point to avoid
unwanted artifacts in the gamut boundary.

The USV algorithm combines many of the advantages
of a segment based method with the stable results of the
modified convex hull. If a simpler surface consisting of fewer
surface points is desired, this is clearly a better choice than
the segment maxima method in terms of accuracy.

CONCLUSIONS

We have introduced a method for GBD evaluation, and
looked at how several different GBDs perform on some data
sets. The choice of GBD and parameter values influences the
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surface that is constructed, and we have shown that it is
important to make an informed choice based on the type of
data and the requirements that apply to the situation.

The modified convex hull algorithm performs well on a
range of different data using y=0.2. This is clearly the
method that should be used if there is no specific prior
knowledge about the data that indicates that another algo-
rithm would perform better. Table II shows that no other
method performs better than this when looking at paired
comparisons of the algorithms for the standard TC 9.18
measurement data. The convex hull in CIEXYZ is a very
good choice if the device is known to have a convex gamut
in this color space. The alpha shapes method does not per-
form as well as the modified convex hull for most data sets
using our suggested a parameter, but has the possible ad-
vantage that with the right tool the a parameter can be
adjusted interactively to give a pleasing visualization of the
gamut for a specific data set. The uniform segment visual-
ization algorithm does not follow densely sampled surface
data as well as the modified convex hull due to its use of a
reduced number of surface points. However, the surfaces
constructed using USV show a consistent performance while
avoiding the use of an excessive number of surface triangles
and vertices.

ACKNOWLEDGMENTS
We would like to thank Professor Are Strandlie for construc-
tive suggestions and discussions.

REFERENCES

'Jin Morovi¢ and M. Ronnier Luo, “The fundamentals of gamut
mapping: A survey”, J. Imaging Sci. Technol. 45, 283-290 (2001).

2David L. MacAdam, “Maximum visual efficiency of colored materials”, J.
Opt. Soc. Am. 25, 361-367 (1935).

*Peter G. Engeldrum, “Computing color gamuts of ink-jet printing
systems”, Proc. SID, 27, 25-30, 1986.

*Gary W. Meyer, Linda S. Peting, and Ferenc Rakoczi, “A color gamut
visualization tool”, in Proceedings of I1S&T and SID’s Color Imaging
Conference (IS&T, Springfield, VA, 1993), pp. 197-201.

> Gary W. Meyer and Chad A. Robertson, “A data flow approach to color
gamut visualization”, in Proceedings of IS&T and SID’s 5th Color
Imaging Conference (IS&T, Springfiled, VA, 1997), pp. 209-214.

®H. E. J. Neugebauer, “Die theoretischen Grundlagen des
Mehrfarbenbuchdrucks”, Zeitschrift fir wissenschaftliche Photographie,

_Photophysik und Photochemie 36, 73-89 (1937).

"M. Mahy, “Calculation of color gamuts based on the Neugebauer
model”, Color Res. Appl. 22, 365-374 (1997).

#Masao Inui, “Fast algorithm for computing color gamuts”, Color Res.
Appl. 18, 341-348 (1993).

®Patrick G. Herzog, “Analytical color gamut representations”, J. Imaging
Sci. Technol. 40, 516-521 (1996).

"patrick G. Herzog, in Specifying and Visualizing Colour Gamut
Boundaries, edited by Lindsay W. MacDonald and M. Ronnier Luo
(Wiley, New York, 1998), Chap. 13, pp. 233-252.

M. C. Stone, William B. Cowan, and J. C. Beatty, “Color gamut mapping
and the printing of digital color images”, ACM Trans. Graphics 7,
249-292 (1988).

2P. G. Herzog, “Specifying and visualizing colour gamut boundaries”, in
Color Imaging: Vision and Technology, edited by L. W. MacDonald and
M. R. Luo(Wiley, New York, 1998), Chap. 13, pp. 233-252.

PJon Y. Hardeberg and Francis Schmitt, “Color printer characterization
using a computational geometry approach”, in Proceedings of IST and
SID’s 5th Color Imaging Conference (ISXT, Springfield, VA, 1997), pp.
96-99; Also in Recent Progress in Color Management and
Communications, edited by R. Buckley (IS&T, Springfield, VA, 1998), pp.
88-91.

"“Jon Y. Hardeberg, Acquisition and Reproduction of Color Images:
Colorimetric and Multispectral Approaches. Dissertation.com, Parkland,

_Florida, 2001.

'>C. Bradford Barber, D.P. Dobkin, and H. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls”, ACM Trans. Math. Softw. 22, 469-483
(1996).

' Xianfeng Zhao, Implementing an ICC printer profile visualization
software. MSc thesis, School of Printing Management and Sciences in
the College of Imaging Arts and Sciences of the Rochester Institute of
Technology, February 2001.

'7]. A. Stephen Viggiano and William J. Hoagland, “Colorant selection for
six-color lithographic printing”, in Proceedings of IS&T and SID’s 6th
Color Imaging Conference (IS&T, Springfield, VA, 1998), pp. 112-115.

" Raja Balasubramanian and Edul Dalal, “A method for quantifying the
color gamut of an output device”, in Color Imaging: Device-Independent
Color, Color Hard Copy, and Graphic Arts 1I, Proc. SPIE Vol. 3018,
110-116 1997.

1 Gustav J. Braun and Mark D. Fairchild, “Techniques for gamut surface
definition and visualization”, in Proceedings of IS&T and SID’s 5th Color
Imaging Conference (ISXT, Springfield, VA, 1997), pp. 147-152.

*Richard L. Reel and Michael A. Penrod, “Gamut visualization tools and
metrics”, in Proceedings of IS&T and SID’s 7th Color Imaging Conference
(IS&T, Springfield, VA, 1999), pp. 247-251.

*'Jan Morovi¢ and M. Ronnier Luo, “Gamut mapping algorithms based
on psychophysical experiment”, in Proceedings of I1S&T and SID’s 5th
Color Imaging Conference (IS&T, Springfield, VA, 1997), pp. 44-49.

*Ryoichi Saito and Hiroaki Kotera, “Extraction of image gamut surface
and calculation of its volume”, in Proceedings of 1S&T and SID’s 8th
Color Imaging Conference (IS&T, Springfield, VA, 2000), pp. 330-334.

»Ryoichi Saito and Hiroaki Kotera, “Image-dependent three-dimensional
gamut mapping using gamut boundary descriptor”, J. Electron. Imaging
13, 630-638 (2004).

**Tomasz J. Cholewo and Shaun Love, “Gamut boundary determination
using alpha-shapes”, in Proceedings of IS&T and SID’s 7th Color Imaging
Conference (IS&T, Springfield, VA, 1998), pp. 200-204.

*Herbert Edelsbrunner and Ernst P. Miicke, “Three-dimensional alpha
shapes”, ACM Trans. Graphics 13, 43-72 (1994).

%Y0achim Giesen, Eva Schubert, Klaus Simon, and Peter Zolliker, “Toward
image-dependent gamut mapping, fast and acccurate gamut boundary
determination”, Proc. SPIE, Vol. 5667, 201-210, 2005.

7Ivar Farup, Jon Y. Hardeberg, Arne M. Bakke, Stile Kopperud, and
Anders Rindal, “Visualization and interactive manipulation of color
gamuts”, in Proceedings of IS&T and SID’s 10th Color Imaging
Conference (IS&T, Springfield, VA, 2002), pp. 250-255.

*Karl Guyler, “Visualization of expanded printing gamuts using 3-
dimensional convex hulls”, American Ink Maker 79, 36-56 (2001).

* A. M. Bakke, 1. Farup, and J. Y. Hardeberg, “Improved gamut boundary
determination for color gamut mapping”, in Advances in Printing
Science and Technology (International Association of Research
Organizations for the Information, Media, and Graphics Arts Industries,
Darmstadt, Germany, 2008), Vol. 35, pp. 365-372.

J. Imaging Sci. Technol. 050502-11 Sep.-Oct. 2010


http://dx.doi.org/10.1364/JOSA.25.000361
http://dx.doi.org/10.1364/JOSA.25.000361
http://dx.doi.org/10.1002/(SICI)1520-6378(199712)22:6<365::AID-COL4>3.0.CO;2-T
http://dx.doi.org/10.1002/col.5080180508
http://dx.doi.org/10.1002/col.5080180508
http://dx.doi.org/10.1145/46165.48045
http://dx.doi.org/10.1145/235815.235821
http://dx.doi.org/10.1117/1.1758727
http://dx.doi.org/10.1145/174462.156635

