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A novel parametric circulating temperament is presented using a constructive approach. The temperament
is optimal with respect to a heuristically chosen set of musical requirements. It is parametric in the sense
that the tempering of the narrowest (i.e. closest to pure) major third can be freely chosen. Equal temper-
ament arises as a limiting case. The temperament is optimal in the sense that the tempering of the widest
major third and the narrowest fifth is minimized given the size of the least tempered major third. Also,
under this constraint, the tempering of the major thirds closest to the least tempered third along the circle
of fifths is minimized. The remaining degree of freedom is used to minimize the number of unique inter-
vals. The resulting temperament exhibits various symmetries, and has, in general, two differently sized
fifths and five differently sized major thirds. The temperament has no historic relevance as such, but can
find good uses within all keyboard music from early baroque till today due to the selection of optimization
criteria that closely follow historical requirements for good temperaments. With some exercise it can be
tuned by ear.
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1. Introduction

Throughout the centuries, different cultures have been using different musical tuning systems.
In western music, it is common practice to construct scales by selecting notes from 12-note
gamuts. There are mainly two musical aspects to the selection of frequencies for the notes of the
gamut; the melodic and the harmonic. It is well established that simple small integer ratios of
frequencies, or close approximations of such, give the most consonant combinations of sound.
Of particular importance between the pure intervals are the octave (2:1), fifth (3:2), major third
(5:4), and combinations thereof. Upon the selection of the frequencies for a 12-note gamut, it is
a common design criterion that these intervals are contained as relationships between the notes
of the gamut. However, since many of these numbers are relatively prime, it is impossible to
construct a gamut where all the contained intervals are pure in the sense that they are small integer
ratios. Instead of having some pure and some unusable intervals, it has been common practice in
western music since the renaissance to have several, or even all of the intervals slightly impure to
different degrees. This is commonly referred to as tempering, and the result as a temperament. If
the resulting temperament divides the octave into equal steps, it is called an equal temperament.
Temperaments where all intervals are musically usable, but not necessarily to the same degree,
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2 I. Farup

are referred to as circulating temperaments. For a thorough introduction to the theory of tuning
and temperaments, see, e.g. Benson (2007).

Many historical temperaments remain known to our time, and they have different properties
in terms of to which degree they favour specific keys and tonalities, and in terms of the num-
ber of distinct intervals. An extensive overview of historical temperaments was provided by
Lindley (1987). Recently, Duffin (2007) argued strongly against the common practice of using
equal temperament for the performance of historical music. He also argued that the number of
distinct intervals in a temperament should be minimized, and thus advocated the use of meantone
temperaments (Duffin 2000).

Particular interest has been paid to the temperament allegedly intended by Johann Sebastian
Bach in his “Das Wohltemperierte Clavier”. It is by now fairly well agreed that he did not intend
the use of equal temperament but instead a non-equal circulating temperament. Several hypothet-
ical reconstructions of Bach’s temperament have been made, including the ones by Kelletat (see
Benson 2007), Kellner (1977), Barnes (1979), Lehman (2005a, 2005b), Jencka (2005; 2011),
O’Donnell (2006). Contrary to Duffin, Lehman argued that a temperament should have many
differently sized intervals in order to achieve key personalities. Amiot (2009) demonstrated that
Lehman’s temperament is superior to other temperaments known to be available at Bach’s time
with respect to a goodness measure based upon the Fourier transform of the resulting musical
scales, but did not compare it to other suggested Bach temperaments.

Sethares (1994) invented a system with adaptive tuning, i.e. a tuning that adapts continuously
and automatically to the combination of notes being played. Amongst keyboard instruments,
however, such approaches can only be used for electronic or electronically controlled instru-
ments. A measurement of goodness-of-fit which aims to be objective was developed by Hall
(1973). The measure was based on the relative importance of keys and intervals, and was con-
structed as a weighted average of the tempering of these. Goldstein (1977) proposed a method
to construct an optimal temperament. The goal of the method was to minimize the impurity of
all fifths and major and minor thirds. He showed that several historical temperaments could be
seen as optimal with respect to this criterion under different constraints. Sethares (1993) devel-
oped a consonance metric based upon the perceptual data of Plomp and Levelt (1965). Sankey
and Sethares (1997) used this metric to construct an optimized temperament for the music of
Domenico Scarlatti. Polansky et al. (2008) followed a similar path, but introduced the use of
all intervals in all keys, and set individual priorities or weights to the keys and intervals. In this
way, they were able to reconstruct historical temperaments such as Werckmeister III, Young’s
temperament (Benson 2007) and equal temperament quite closely. Recently, Milne et al. (2011)
developed a similarity metric for pitch collections based on the novel concept of expectation
tensors.

In the current paper, a different approach is followed. Instead of defining an objective metric
of consonance as a starting point, a set of musical requirements is chosen. The criteria aim to
follow historical temperaments, and can therefore be subject to debate. However, it is shown that
given the choice of prioritized musical requirements, a parametric temperament that is optimal
with respect to the selected requirements can be constructed. The following set of requirements
is chosen and prioritized as follows: (1) there should be no wide fifths and no narrow major
thirds, since wide fifths or narrow major thirds lead to unnecessarily strong tempering of other
intervals. (2) There must be a tonal centre corresponding to the least tempered major third, and
the major thirds closest to this tonal centre along the circle of fifths should have priority over
the more distant ones. (3) The temperament should be as symmetric as possible about the tonal
centre in terms of the major thirds. In other words, if C is chosen as the tonal centre, flat keys
should not be favoured over sharps or vice versa. (4) The resulting number of unique intervals in
the temperament should be kept as low as possible. (5) No interval must be tempered more than
absolutely necessary in order to obey the other criteria.
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Journal of Mathematics and Music 3

2. Developing the temperament

2.1. Notation and definitions

Start by numbering the 12 notes along the circle of fifths (Figure 1), by i ∈ {0, . . . , 11}, such
that C = 0, G = 1, etc., using enharmonic equivalences, e.g. D# = E� = F��, etc. as commonly
done for 12-note temperaments.

A temperament is completely described when, e.g. the sizes of the 12 fifths are known. Let f (i)
denote the tempering of the upward fifth starting at note i as measured on a logarithmic scale.
In particular, f (0) is the tempering of the fifth C–G. If f (i) = 0, the fifth from note i is pure. If
f (i) < 0, the fifth is narrow, and if f (i) > 0, it is wide. In order to close the circle of fifths, the
total tempering of the fifths must add up to the Pythagorean comma (Benson 2007)

11∑
i=0

f (i) = −P. (1)

For convenience, the notation f̃ is introduced for the periodic extension with period 12 of the
function f . In other words f̃ (i) = f (i) for i ∈ {0 . . . 11} and f̃ (i) = f̃ (i + 12n) for n ∈ Z.

Let t(i) denote the tempering of the upward major third starting at note i. The major third
is made up of four consecutive fifths. If these fifths are all pure, the resulting interval is a
Pythagorean major third, which is one syntonic comma, S, wide. Thus, using periodic extensions
as above

t̃(i) = S +
i+3∑
j=i

f̃ (j). (2)

Similar equations can be constructed for the other intervals of the scale when needed.

Figure 1. The circle of fifths. The numbers indicate the numbering system used throughout the text.
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4 I. Farup

In a circulating temperament, three consecutive major thirds make up one octave. The dif-
ference between three pure major thirds and one octave is one diesis, which equals 3S − P, as
follows directly by combining Equations (1) and (2):

2∑
j=0

t̃(i + 4j) = 3S − P, ∀i. (3)

2.2. Basic assumptions

In constructing the temperament, some assumptions must be made. In agreement with many (but
not all) authors and historical temperaments (Benson 2007, Lindley 1987), it is here assumed
that no major thirds are tuned narrow, and no fifths are tuned wide, i.e.

f̃ (i) ≤ 0, ∀i, (4)

t̃(i) ≥ 0, ∀i. (5)

Non-equal temperaments most often have a main key of preference (Benson 2007). Without
loss of generality, it can be assumed that this is the key of C. If a different tonal centre is desired,
the temperament can easily be transposed. It is then preferred to have C–E as the least tempered
major third, and thus

t̃(i) ≥ t̃(0), ∀i. (6)

The less this major third is tempered, the less equal the resulting temperament becomes. In order
to make a parametric temperament, the tempering of this major third is left to be specified by the
user. No interval should be tempered more than necessary. This applies in particular to the fifths.
Since t(0) is the least tempered major third, the average tempering of the four fifths constituting
it will have to be the most tempered sequence of four consecutive fifths (Figure 1). A minimized
tempering of these fifths is obtained by distributing the total tempering t(0) evenly across the
first four fifths, giving

f (0) = f (1) = f (2) = f (3) = F0, (7)

where F0 is the single parameter of choice. Thus, the tempering t(0) is expressed as

t(0) = S + 4F0, (8)

hence F0 must be chosen such that F0 ≥ −S/4 in order not to make t(0) < 0, which would
disobey the criterion in Equation (5). Also, one must have F0 ≤ −P/12 according to Equa-
tions (1)–(3), else the assumption in Equation (6) of t(0) be the least tempered major third will
not hold true. Thus, one must have

−S

4
≤ F0 ≤ − P

12
. (9)

Similarly, the tempering of the most tempered major thirds should be minimized given the
tempering of the least tempered major third, Equation (8). According to Equation (3), a first step
towards this goal can be achieved by setting

t̃(i) ≤ t(4) = t(8), ∀i. (10)

A common property for historical temperaments is that the least tempered major thirds are
close to each other along the circle of fifths (Figures 2 and 6). Since the tempering t(4) and t(8)
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Journal of Mathematics and Music 5

is already given, no major third should be wider than these. However, in order to minimize the
size of the major thirds close to the tonal centre, the major thirds between t(4) and t(8) should
be as great as possible within the limit of Equation (10). Thus, one must have

t(4) = t(5) = t(6) = t(7) = t(8). (11)

Solving Equation (11) for the fifths, using Equation (2), gives

f (4) = f (8),

f (5) = f (9),

f (6) = f (10),

f (7) = f (11).

(12)

In total, Equations (1), (7) and (12) constitute 9 linear equations for the tempering of the
12 fifths, f (i). This means that three degrees of freedom remain in addition to the designed-
in freedom to select the parameter F0. The remaining freedom can be used to set, e.g. three
of the remaining major thirds t(i), i ∈ {1, 2, 3, 9, 10, 11}, or three of the remaining fifths f (i),
i ∈ {4, 5, 6, 7, 8, 9, 10, 11}, any combination of three of these, or any other combination of three
independent intervals not following from the nine equations already set.

Although this might seem quite some amount of freedom, the constraints formed by the nine
equations following from the assumptions turn out to be quite strict. For example, very few of the
existing temperaments known to the author obey all these constraints, the only ones being equal
temperament (with F0 = −P/12) and Johann Georg Neidhardt’s circulating temperament no. 1
(with F0 = −P/6). This latter temperament can be described by the vector whose components

Figure 2. The tempering of fifths (black) and major thirds (grey) in Johann Georg Neidhardt’s circulating temperament
no. 1 as measured in cent. The solid and the dashed horizontal lines show the tempering of major thirds and fifths in equal
temperament, respectively.
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6 I. Farup

(a)

(b)

Figure 3. The tempering of fifths (black) and major thirds (grey) as measured in cent in constructed temperaments
with priority for the sharp (above) and flat (below) keys. The solid and the dashed horizontal lines show the tempering
of major thirds and fifths in equal temperament, respectively (see Section 2.2 for details).

are the tempering of the fifths f (0), f (1), . . . , f (11)

f = −P

6
(1 1 1 1 1

2
1
2 0 0 1

2
1
2 0 0)T. (13)
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Journal of Mathematics and Music 7

An illustration of this temperament is shown in Figure 2. The figure shows the tempering of
fifths and major thirds in cent. Cent is defined on a logarithmic scale such that one octave equals
1200 cent, and P ≈ 23.46001038 cent.

The three remaining parameters can be used to favour keys with sharps or keys with flats as
shown in Figure 3. These temperaments were obtained as extreme cases by setting F0 = −P/6
and f (9) = f (10) = f (11) = 0 for the first one, giving

f = −P

6
(1 1 1 1 1 0 0 0 1 0 0 0)T, (14)

and f (4) = f (5) = f (6) = 0 for the second one, giving

f = P

6
(1 1 1 1 0 0 0 1 0 0 0 1)T. (15)

2.3. Exploiting symmetries

Although the possibility of constructing temperaments favouring flats or sharps can be inter-
esting for particular applications, there seems to be no good reason for doing so for a general
all-round temperament. Actually, for an optimal temperament, it is reasonable to insist on it
being symmetric, i.e. that it does not favour flats over sharps or vice versa. This criterion
can be formulated as the major thirds being symmetric about the tonal centre, which in this
case is C

t̃(i) = t̃(−i), ∀i. (16)

Inserting the definitions of the major thirds, Equation (2) into Equation (16) and solving for f̃ (i)
gives the equivalent symmetry of fifths

f̃ (2 + i) = f̃ (2 − i), ∀i. (17)

In other words, if the tempering of the major thirds is symmetric about the C–F� axis of the circle
of fifths (Figure 1), the tempering of the fifths will be symmetric about the D–A� axis. This result
is independent of the assumptions made in Section 2.2, but follows directly from the definitions
of the relationship between the tempering of the fifths and major thirds, Equation (2). Similar
symmetry properties can be found for the other intervals in exactly the same way. For example,
the major seconds, being made up of two consecutive fifths, will be symmetric about the G–D�

axis in the chosen case.
The symmetries in Equation (16), or, equivalently, Equation (17) constitute six linearly inde-

pendent equations. Together with the nine equations from the basic assumptions in Section 2.2,
there are now 15 equations for the 12 unknown fifths. However, they are not all linearly indepen-
dent, as can be seen, e.g. by writing the equations in matrix form and calculating the rank of the
system matrix. Only two of the symmetry equations are linearly independent from the nine equa-
tions already established. Thus, even with the symmetry criterion, there is still one remaining
degree of freedom.
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8 I. Farup

The general solution to the set of 11 Equations (1), (7), (12) and (16) can be written as

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0

F0

F0

F0

F1

−F0 − F1 − P
4

−F0 − F1 − P
4

F1

F1

−F0 − F1 − P
4

−F0 − F1 − P
4

F1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The effect of changing F0 should be familiar by now; it determines how close to pure the
best major third is. The effect of changing F1 can be studied by setting it to the extreme val-
ues of F1 = −F0 − P/4 and F1 = 0. The resulting temperaments in this case for F0 = −P/6
are shown in Figure 4. Only the four major thirds t(1), t(3), t(9) and t(11) are affected. Setting
F1 as low as possible, i.e. tempering the E–B fifth as much as possible within the given con-
straints, results in a tempering favouring the major thirds closest to the central key along the
circle of fifths, whereas setting F1 = 0 gives priority to the more distant major thirds at the cost
of increasing the tempering of the close major thirds. With respect to the criterion of prioritizing
the most central major thirds, this should mean that the optimal temperament given F0 is found
by setting F1 = −F0 − P/4. However, there is an even better way to use the remaining degree
of freedom.

2.4. Number of distinct intervals

Duffin (2000) argued strongly that the number of distinct intervals in a circulating temperament
should be minimized. This is particularly important when playing together with other instru-
ments, such as bowed string instruments without fixed pitches. Actually, Duffin goes as far as to
promote the use of 1

6 -comma meantone temperament. As a general temperament for keyboards
for a broad range of music, this is not an option due to the number of unusable (wolf) intervals,
but the criterion of reducing the number of distinct intervals can be applied also in the current
setting. It should be noted that this is completely opposite to Lehman’s requirement that a good
temperament should have as many distinct interval as possible in order to achieve key personal-
ities (Lehman 2005a, 2005b). Here, the Duffin criterion is chosen. Whether this is a good choice
or not is a matter of taste and practical considerations that should be left to the discretion of the
performing musicians.

In a temperament, as soon as the sizes of all the fifths are known, the sizes of the other inter-
vals can be computed. The tempering of the major seconds equals the sum of two consecutive
fifths, major sixths are three consecutive fifths, major thirds are four, major sevenths are five and
the tritones are six. The remaining intervals are inversions of these. In the general case, the tem-
perament in Equation (18) has three different fifths (and fourths), five major seconds (and minor
sevenths), five major sixths (and minor thirds), five major thirds (and minor sixths), five major
sevenths (and minor seconds) and seven tritones, adding up to a total of 30 different intervals,
not counting inversions. This can be reduced, and has a unique minimum, which is obtained
by setting F1 = −F0/2 − P/8. In this case, the eight fifths f (4), . . . , f (11) become equal, since
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Journal of Mathematics and Music 9

(a)

(b)

Figure 4. The tempering of fifths (black) and major thirds (grey) as measured in cent in constructed temperaments with
priority for the central (above) and distant (below) keys. The solid and the dashed horizontal lines show the tempering of
major thirds and fifths in equal temperament, respectively (see Section 2.3 for details).
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10 I. Farup

−F0 − F1 − P/4 = −F0/2 − P/8. The temperament is then completely described by

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F0

F0

F0

F0

−F0
2 − P

8

−F0
2 − P

8

−F0
2 − P

8

−F0
2 − P

8

−F0
2 − P

8

−F0
2 − P

8

−F0
2 − P

8

−F0
2 − P

8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

This particular temperament has two distinct fifths, three major seconds, four major sixths, five
major thirds, five major sevenths and five tritones, adding up to a total of 24 intervals, not
counting inversions. The resulting temperament is shown in Figure 5 for various choices of F0.

For some special choices of F0, there are other even more optimal solutions with respect to
this criterion. For F0 = −P/8 there are two ways to achieve an even lower number of distinct
intervals. Setting F1 = −P/8 in Equation (18) gives a total of 20 different intervals, and setting
F1 = 0 gives a total of 17 different intervals. These are hence referred to as the suboptimal and
optimal temperaments for F0 = −P/8. For F0 = −P/12, the resulting limiting case is equal
temperament, where there is only one version of each interval, adding up to a total of six distinct
non-unison intervals, not counting inversions.

3. Discussion

3.1. Comparison with other temperaments

Figure 6 shows the behaviour of well-known temperaments. As a general observation, it should
be noted that the overall behaviour is not as systematic and symmetric as for the proposed
solution in Figure 5. This might be interpreted as the proposed solution being superior to the
historic temperaments in this respect, but it could also be taken as an observation undermining
criterion (3) in Section 1.

Properties of well-known temperaments are shown together with the proposed optimal tem-
perament for several choices of F0 in Table 1. The temperaments are sorted by the size of the
best (i.e. least tempered) major third, the size of the worst (i.e. most tempered) major third and
the total number of distinct intervals not counting inversions, in order of priority. The table also
shows the number of distinct version of the individual intervals. For each size of the best major
third, the corresponding version of the suggested temperament is shown. For all of the tempera-
ments listed, the proposed solution has the smallest size of the largest major third, and in many
cases also the smallest number of distinct intervals.

Although not the major topic of the current paper, it is interesting to compare the hypothetical
Bach temperaments in this respect. Two of the temperaments, Kelletat and Lehman, have a very
high number of distinct intervals, whereas three others, Kellner, Barnes and O’Donnell, have a
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Journal of Mathematics and Music 11

(a)

(b)

(c)

Figure 5. The tempering of fifths (black) and major thirds (grey) as measured in cent for the different choices of
F0 = −S/4 (top), F0 = −P/6 (middle) and F0 = −P/8 (bottom). The solid and the dashed horizontal lines show the
tempering of major thirds and fifths in equal temperament, respectively (see Section 2.4 for details).
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12 I. Farup

(a)

(b)

(c)

Figure 6. The tempering of fifths (black) and major thirds (grey) as measured in cent for well-known temperaments.
Kirnberger III (top), Valotti (middle) and Lehman’s Bach temperament (bottom). The solid and the dashed horizontal
lines show the tempering of major thirds and fifths in equal temperament, respectively.
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Table 1. Comparison of the suggested optimal temperament with well-known existing temper-
aments.

Major thirds (tu) Number of distinct intervals

Min Max 5th 2nd 6th 3rd 7th Tritones Total
Pure 0.00 41.06 3 3 4 2 4 4 20
1/4-comma meantone 0.00 41.06 2 2 2 2 2 2 12
Kelletat 0.00 21.51 4 6 8 9 10 10 47
Kirnberger III 0.00 21.51 3 4 5 7 8 8 35
Proposed, F0 = −S/4 0.00 20.53 2 3 4 5 5 5 24
Kellner 2.74 21.51 2 3 4 5 5 6 25
Proposed, F0 = −P/5 2.74 19.16 2 3 4 5 5 5 24
Werckmeister III 3.91 21.51 2 3 4 4 4 5 22
Proposed, F0 = −3P/16 3.91 18.57 2 3 4 5 5 5 24
Valotti 5.87 21.51 2 3 4 5 6 7 27
Lehman 5.87 19.55 4 4 6 7 8 9 38
Barnes 5.87 21.51 2 3 4 5 6 5 25
Neidhardt no. 1 5.87 17.60 3 5 5 6 7 9 35
Proposed, F0 = −P/6 5.87 17.60 2 3 4 5 5 5 24
Sorge 9.78 17.60 3 5 5 4 6 7 30
Neidhardt 4 9.78 17.60 4 4 5 4 6 5 28
O’Donnell 9.78 17.60 3 4 5 4 5 5 26
Proposed, F0 = −P/8 9.78 15.64 2 3 4 5 5 5 24
Suboptimal, F0 = −P/8 9.78 15.64 2 3 3 3 4 5 20
Optimal, F0 = −P/8 9.78 15.64 2 3 3 3 3 3 17
Equal temperament 13.69 13.69 1 1 1 1 1 1 6

Note: The temperaments are sorted by the best major third, the worst major third (in cent) and the total number
of distinct intervals, in order of priority.

very low number. To the best of the author’s knowledge, this particular aspect has not been much
debated in the construction of Bach temperaments.

According to Table 1, the proposed temperament is superior to the other selected temperaments
with respect to the chosen set of musical requirements. However, this does not necessarily mean
that it is in any sense better than other temperaments. Appreciating the subtle nuances of different
temperaments is something that has to be learned and trained, and in the end, people end up
preferring different solutions. It is therefore the author’s opinion that it does not make very much
sense to perform perceptual experiments with the goal of showing that some temperament is
better than some other. The only way to really judge a temperament (like any other subject of
taste) is to try it out on a real acoustic instrument and make up one’s own opinion. Thus, the
following two paragraphs solely represent the author’s personal opinion, and is not supposed to
represent any scientific result.

With F0 = −S/4, the resulting temperament in many ways resembles Kirnberger III. The
narrowest major third is pure, and there are big differences in key personalities. However, the
widest major third is less tempered than in Kirnberger III. Also, while Kirnberger III is quite
asymmetric favouring keys with sharps, the proposed solution is much more symmetric. The
major triads on E, B and F� are somewhat better in Kirnberger III, but all other triads sound
better to the author in the proposed solution.

With F0 = −P/6, the resulting temperament shares the size of the best major thirds with both
the Valotti and Lehman temperaments. However, it differs from Valotti in that the worst major
third is much better, thus giving an improved rendering of the keys distant from the tonal centre.
It differs from the Lehman temperament in that the key personalities are not as strong. This may
be judged as a drawback or as a benefit depending on taste. The keys with sharps are generally
better with the proposed solution, whereas the keys with flats, A� major, E� major and F major in
particular, sound more pleasing in Lehman’s temperament. The E–G� major third is significantly
purer in the proposed solution compared with Lehman’s temperament. The number of distinct
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intervals is also very different between these two temperaments. Thus, the melodic lines might be
less interesting, but more smooth with the proposed temperament, but, according to Duffin (2000)
the proposed solution will be easier to adapt to for musicians playing bowed string instruments.

3.2. Practical tuning recipe

With some training, the temperament in Equation (19) can be tuned by ear on keyboard instru-
ments. Here is a brief outline on how it can be achieved: temper the major third C–E as preferred;
it should be pure or slightly wide. The choice prescribes the single parameter F0. Then, tetrasect
the major third into four equal fifths according to common procedure (for detailed instructions on
how to perform the tetrasection of the major third by ear, see, e.g. Bavington 2007). Tune G�/A�

such that the major thirds E–G� and A�–C are equally wide. Finally, tetrasect the major thirds
E–G� and A�–C. With some exercise, this can be performed quite accurately and rapidly by ear.

4. Conclusion

A parametric circulating temperament is constructed. It is optimal with respect to a heuristically
selected set of prioritized musical requirements, and, thus superior to other well-known temper-
aments with respect to the chosen criteria. The criteria are of course subject to debate, but if the
criteria are agreed upon, the resulting temperament is shown to be optimal. According to the
author’s personal opinion, it lends itself well to a broad range of musical genres.
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