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Abstract
Anisotropic diffusion has long been an important tool in image processing. More recently, it has also found its way to colour
imaging. Until now,mainly Euclidean colour spaces have been considered in this context, but recent years have seen a renewed
interest in and importance of non-Euclidean colour geometry. The main contribution of this paper is the derivation of the
equations for anisotropic diffusion in Riemannian colour geometry. It is demonstrated that it contains several well-known
solutions such as Perona–Malik diffusion and Tschumperlé–Deriche diffusion as special cases. Furthermore, it is shown how
it is non-trivially connected to Sochen’s general framework for low-level vision. The main significance of the method is
that it decouples the coordinates used for solving the diffusion equation from the ones that define the metric of the colour
manifold, and thus directs the magnitude and direction of the diffusion through the diffusion tensor. It also enables the use
of non-Euclidean colour manifolds and metrics for applications such as denoising, inpainting, and demosaicing, based on
anisotropic diffusion.

Keywords Image processing · Colour geometry · Riemannian geometry · Anisotropic diffusion

1 Introduction

Since the mid-eighties, diffusion methods have been actively
used for various purposes in image processing. Starting
with simple linear diffusion for the denoising of greyscale
images [1], it has since been extended to nonlinear dif-
fusion [2], diffusion processes in colour images [3], and
anisotropic diffusion of colour images [4] with applications
to denoising and inpainting. More recently, the diffusion-
based method of gradient domain image processing [5] has
also found its way to colour imaging for such applications as
HDR image tonemapping [6], image compression [7], gamut
mapping [8], demosaicing [9], colour-to-greyscale conver-
sion [10], and daltonisation [11].

Although it has long been established that perceptual
colour manifolds are non-Euclidean [12–16], Euclidean
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colour spaces have been the primary consideration in the con-
text of image diffusion until now. Recent years have shown a
renewed interest in and importance of non-Euclidean colour
geometries [17–20]. This emphasises the need of being able
to perform basic image processing operations in such colour
geometries.

In this paper, we derive the equations for anisotropic
diffusion in Riemannian colour geometry as an extension
of the methods of Perona and Malik [2] and Tschumperlé
and Deriche [4]. Firstly, in Sect. 2, the state-of-the-art Rie-
mannian colour geometry and diffusion methods in image
processing and colour imaging are reviewed. The anisotropic
diffusion equation in Riemannian geometry is then derived in
detail in Sect. 3. In Sect. 4, it is demonstrated that it contains
several well-known solutions as special cases.

2 Background

Here, we review the state of the art for Riemannian colour
geometry as well as for diffusion methods in image process-
ing and colour imaging. To emphasise the similarities and
differences between various approaches, we will use a con-
sistent formulation and notation, thus deviating from that of
the original sources. As such, it will also serve to introduce
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the notation used in the derivation of our method in the next
section.

2.1 Riemannian Colour Geometry

Most literature on image processing for vector-valued images
is performed in Euclidean colour geometries. In these cases,
it makes the most sense to use a vectorial notation and not
focus as much on the vector components. Shifting to a non-
Euclidean geometry, the component-free notation becomes
more problematic and will obscure many of the details in the
mathematical derivations.Wewill therefore use a coordinate-
dependent notation for Riemannian geometry [21, 22].

Throughout, we will use Latin indices for the spatial
coordinates in the image domain and Greek indices for
colour coordinates, whether in Euclidean or non-Euclidean
geometries. Superscripts will denote the contravariant vec-
tor components, and subscripts will be used for the covariant
ones.Acommabefore an indexdenotes partial differentiation
with respect to that coordinate. The summation convention
of Einstein [23] will be used throughout, unless otherwise
specified. The convention says that every coordinate index
that occurs twice in the same term implies a sum over that
term, e.g. aibi = ∑

i ai bi .
Already when Riemann [24] presented his theory of

non-Euclidean geometry, mentioned colour perception as
a potential application.1 A central element in Riemannian
geometry is the metric tensor g with components gμν that
determines the line element (‘infinitesimal distance’) through
the quadratic form

dl2 = gμνdu
μduν . (1)

The first representation of a colour metric (‘perceptual dis-
tance’) described in terms of a Riemannian metric was
given by Helmholtz [25]. Motivated by the Weber–Fechner
law [26], it was described in terms of the line element

dl2 =
(
du0

u0

)2

+
(
du1

u1

)2

+
(
du2

u2

)2

(2)

corresponding to a diagonal metric tensor with gμμ =
1/(uμ)2 on the diagonal (no sum). The colour coordinates
correspond to the responses of the human visual system
to long, medium, and short wavelengths, respectively. The
resulting geometry is isometric with Euclidean geometry
through the coordinate mapping xμ = ln uμ.

The first actual non-Euclidean colour geometry was pro-
posed by Schrödinger [12] (see Niall [27] for a modern

1 ‘[...] dass die Orte der Sinnengegenstände und die Farben wohl
die einzigen einfachen Begriffe sind, deren Bestimmungsweisen eine
mehrfach ausgedehnte Mannigfaltigkeit bilden’ [24]

translated and commented version) in terms of the metric,

dl2 = 1

α1u1 + α2u2 + α3u3
×

(
α1 du21
u1

+ α2 du22
u2

+ α3 du23
u3

)

,

(3)

again corresponding to a diagonal metric with gμμ =
αμ/(uμανuν) (no sum for μ) on the diagonal. Stiles [13]
went back to a form more similar to that of Helmholtz, but
with relative weights to the three colour channels,

dl2 =
(

du0

α0u0

)2

+
(

du1

α1u1

)2

+
(

du2

α2u2

)2

(4)

or gμμ = (αμuμ)−2 (no sum). Motivated by research on
colour vision, more elaborate extensions along this line were
given by Bouman, Vos, and Walraven [14]. More recently,
Pant and Farup [17] found that it is constructive to for-
mulate industrial colour difference formulae within this
framework. This applies even to non-Riemannian metrics
such as CIEDE2000 [28] through the process of ‘Riemanni-
sation’ [17].

Common to the non-Euclidean colour representations
above is that they exhibit some form of negative curvature
within iso-luminance surfaces. This is in complete agree-
ment with the observations of Judd [15] on the phenomenon
of ‘hue super-importance’, as well as with the results of
MacAdam [29–31] on the curvature of the colour mani-
fold based on observed colour discrimination. Based on a
set of axioms essentially consisting of Grassmann’s laws
of colour vision augmented with the concept of homogene-
ity of the colour manifold (which is still open for debate),
Resnikoff [16] proved that the geometry of colour per-
ception must be either Euclidean or isomorphic to R

+ ×
SL(2,R)/SO(2). The latter case can be realised as theCarte-
sian product R+ × H of a positive real line (for brightness)
and a hyperbolic plane (for chromaticity) in the Poincaré
half-plane representation, resulting in the metric

dl2 =
(
du0

u0

)2

+ α

[
(du1)2 + (du2)2

(u2)2

]

(5)

again corresponding to a diagonal metric with g00 =
1/(u0)2, g11 = g22 = α/(u2)2. It was shown by Farup [18]
that enforcing this geometry (or rather the isometricPoincaré-
disc representation,R+×D) on already optimised Euclidean
colour difference formulae consistently improved their per-
formance. Recently, the tradition of Resnikoff has been
revived and extended by Provenzi and co-workers, see [19,
20], clearly indicating that non-Euclidean colour geometry
will become increasingly important in the future.
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2.2 DiffusionMethods for Grey-Scale Images

Diffusion processes can be found almost everywhere in
nature. For general physical systems, they contribute to
smoothing out quantities like temperature, heat, and concen-
tration of chemical substances. The underlying mechanism
is described by Fick’s law of diffusion, saying that the flux
of a diffusive quantity is directed opposite to the gradient of
the same quantity. In other words, diffusive quantities tend
to move from regions of high concentration to regions of
low concentration. When Fick’s law is combined with a con-
servation law for the same quantity, the diffusion (or heat)
equation results

∂u

∂t
= ∇2u = u,i i . (6)

The Green’s function of the diffusion equation is a Gaussian
function with a variance that increases with time, showing
that solving the diffusion equation is equivalent to performing
the convolution with a Gaussian kernel.

The latter observation led to the introduction of diffu-
sion methods for image processing. For image denoising
of greyscale images, the technique was first used by Koen-
derink [1] by applying the heat equation directly to the pixel
values. Koenderink also derived the same method from the
criteria of causality, homogeneity, and isotropy.

While performing well for the smoothing of noisy areas,
linear isotropic diffusion also blurs edges and details. To
stop the diffusion at edges, Perona and Malik [2] intro-
duced an image-dependent, local, nonlinear diffusionmethod
described by the equation

∂u

∂t
= ∇ · (D(s)∇u) = ∂i (D(s)u,i ), (7)

where s = |∇u|2, describing the image ‘structure’, has been
introduced. They proposed two different diffusion coeffi-
cients with different properties

D(s) = exp
(
− s

K 2

)
(8)

D(s) = 1

1 + s/K 2 . (9)

Instead of designing PDEs directly, Rudin, Osher, and
Fatemi [32] used a variational approach. The standard lin-
ear diffusion, Equation(6) is obtained by the Euler–Lagrange
equations minimising the cost functional

E = 1

2

∫

�

|∇u|2d�, (10)

whereas they introduced the concept of total variation and
showed that the minimisation of

E =
∫

�

|∇u| d� (11)

leads to the PDE

∂u

∂t
= ∇ ·

( ∇u

|∇u|
)

. (12)

Comparing this with the Perona–Malik diffusion, Equation
(7), we see that it can be written in the same form choosing

D(s) = 1√
s
. (13)

2.3 Data Attachment for Grey-Scale Images

The diffusion processes described above will produce a
homogeneous grey image as t → ∞ when solved with natu-
ral boundary conditions.Oneway to obtain the desired degree
of image regularisation is to stop after a certain number of
time steps. Alternatively, one can introduce a data attachment
term

E = ω

2

∫

�

(u − u0)
2d� (14)

(also called ‘fidelity term’) to the cost functional to be min-
imised. This leads to an extra term ω(u − u0) in the PDE.
E.g. Equation (7) becomes:

∂u

∂t
= ∇ · (D(s)∇u) − ω(u − u0). (15)

2.4 DiffusionMethods for Colour Images

For the simple linear diffusion described by Equation (6),
the extension to colour images is straightforward in the
Euclidean case. Starting from the variational principle Equa-
tion (10), the colour channels of the image decouple, and we
end up with identical linear diffusion equations for each of
the colour channels.

For total variation and Perona–Malik diffusion, the exten-
sion is not that straightforward. Blomgren and Chan [3]
introduced the concept of colour total variation by introduc-
ing a cost functional as an �2 norm of the cost functionals in
Equation (11) for each of the colour channels, resulting in

E =
√∑

i

E2
i , (16)

where Ei is the total variation for each colour channel accord-
ing to Equation (11).
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Later approaches have been based on the structure ten-
sor by Di Zenzo [33] and Bugun and Granlund [34], with
components

si j = uμ
,i u

μ
, j . (17)

Sapiro and Ringach [35] proposed to use the eigenvalues

λ± = 1

2

(

s11 + s22 ±
√

(s11 − s22)2 + 4s212

)

(18)

and the corresponding eigenvectors θ± of the structure tensor
as a basis for constructing the diffusion equations. In terms of
these eigenvalues, an alternative to the colour total variation
byBlomgren andChan can be obtained by the cost functional

E =
∫

�

√
λ+ + λ− d� =

∫

�

√
s d�. (19)

For greyscale images, where λ+ = |∇u|2 and λ− = 0, this
reduces to total variation. For colour images, the correspond-
ing Euler–Lagrange equations become

∂uμ

∂t
= ∂i

⎛

⎝
uμ

,i
√
uν

, j u
ν
, j

⎞

⎠ , (20)

which again is on the form of Equation (7) with D(s) =
1/

√
s = 1/

√
λ+ + λ− = 1/

√
s11 + s22 = 1/

√
uν

, j u
ν
, j .

Notice the coupling between the colour channels introduced
by the sum in the denominator of Equation (20).

Tschumperlé and Deriche [4] extended this approach to
anisotropic diffusion by introducing the general Lagrangian
density ψ(λ+, λ−) in the cost functional

E =
∫

�

ψ(λ+, λ−) d�. (21)

The corresponding Euler–Lagrange equations are

∂uμ

∂t
= ∂k(D

kluμ
,l ), (22)

where Dkl are the components of the diffusion tensor

Dkl = 2
∂ψ

∂λ± θk±θ l± (23)

and θ± are the orthonormal eigenvectors of the structure sen-
sor si j , summing also over the eigenvalue and eigenvector
indices for convenience (even though they, technically speak-
ing, are not coordinates). It should be noted that this encom-
passes all previously presented diffusionmethods as follows:
ψ(λ+, λ−) = √

λ+ + λ− gives the solution of Sapiro and
Ringach [35] for colour images and total variation in Rudin,

Osher, and Fatemi [32] for greyscale images, ψ(λ+, λ−) =
−K 2 exp(−s/K 2) andψ(λ+, λ−) = K 2 ln(1+s/K 2) gives
the two equations of Perona andMalik [2], andψ(λ+, λ−) =
s/2 gives the classical linear diffusion of Koenderink [1]. In
general, choosingψ(λ+, λ−) = φ(λ++λ−) = φ(s) leads to
isotropic equations, since then ∂ψ/∂λ+ = ∂ψ/∂λ− = φ′(s)
and the diffusion tensor in Equation (23) reduces to the
scalar diffusion coefficient D = 2φ′(s). With ψ(λ+, λ−) =
φ+(λ+) + φ−(λ−), the diffusion in the mutually orthogonal
directions of maximal and minimal change can be controlled
independently, like used in Farup [11].

All of the above applies to Euclidean colour spaces. Ren-
ner [36] extended the approach of Tschumperlé and Deriche
for the isotropic case2 of ψ(λ+, λ−) = φ(s) to Riemannian
geometries with diagonal metric tensors, and found that in
that case, the diffusion equation can be written

∂uρ

∂t
= ∂k(Duρ

,k) + Dρ
μνu

μ
,ku

ν
,k (24)

with D = 2φ′(s) as the diffusion coefficient. Here, 
ρ
μν

denotes the components of the Christoffel symbols of the
Riemannian colour geometry (see, e.g., [22]).

Sochen et al. [37] constructed a geometrical frame-
work for flow for images. Considering images as two-
dimensional manifolds with coordinates Xi embedded in
five-dimensional manifolds (two spatial and three colour
dimensions), they showed how the Polyakov action [38]
(using Sochen’s original notation)

S[Xi , gμν, hi j ] =
∫

Dmσ
√
ggμν∂μx

i∂νX
jhi j (X), (25)

where g is the imagemetric andh themetric of the embedding
space, led to the Euler–Lagrange equations

1√
g
∂μ(

√
ggμν∂νX

i ) + i
jk∂μX

j∂νX
kgμν = 0. (26)

However, the connection of this framework to the diffusion
tensor of anisotropic diffusion, and thus themost general case
of anisotropic diffusion in Riemannian geometries with non-
diagonal metrics, has not yet been covered in the literature.

2.5 Data Attachment for Colour Images

Just as for grey-scale images, all the diffusion equations
described above will produce a homogeneous flat image
as t → ∞ when solved with natural boundary conditions.
Rudin, Osher, and Fatemi [32] used a data attachment term

2 Also in the work of Renner [36], the method was termed anisotropic
despite being isotropic, cf. the previously discussed confusion.
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based on the �2 norm of the difference between the unknown
image and the initial value,

E = ω

2

∫

�

(uμ − uμ
0 )(uμ − uμ

0 )d� (27)

leading to an extra term ω(uμ −uμ
0 ) in the PDE for Equation

(22)

∂uμ

∂t
= ∂k(D

kluμ
,l ) − ω(uμ − uμ

0 ). (28)

Pang et al. [39] suggested using the �1 norm instead,

E = ω

∫

�

√
(uμ − uμ

0 )(uμ − uμ
0 ) d� (29)

leading to the extra term ω(uμ −uμ
0 )/

√
(uν − uν

0)(u
ν − uν

0)

in the Euler–Lagrange equations. E.g. Equation (22), this
gives

∂uμ

∂t
= ∂k(D

kluμ
,l ) − ω

uμ − uμ
0√

(uν − uν
0)(u

ν − uν
0)

. (30)

3 Anisotropic Diffusion in Riemannian
Colour Geometry

3.1 Basic Assumptions

To make the results as general as possible, let � ⊂ R
N

denote the N -dimensional (typically two) Euclidean image
domain, C denote an M-dimensional (typically three) Rie-
mannian colour manifold, and u : � → C denote an image
with components uμ. Let

si j = gμνu
μ
,i u

ν
, j (31)

with N eigenvalues λp and orthonormal eigenvectors θp
defining the natural Riemannian generalisation of the struc-
ture tensor. The eigenvalue decomposition of s is given as3

skl = λpθkpθ
l
p. (32)

To avoid ambiguity, we assume the generic condition, which
means distinct eigenvalues in all points. Thus, the eigenvec-
tors θp are well defined up to sign. The eigenvector fields
θp are differentiable with the generic condition. That is not
the case in the non-generic case in general. In fact, the func-
tion u(x, y) = xy provides a greyscale example where it

3 WeapplyEinstein’s summation convention for the index p referring to
different corresponding eigenvalues and eigenvectors as well, although
it is not a coordinate index.

is impossible to find continuous fields of eigenvectors for s.
Because of the continuity of final Equation (45), this has no
consequences for the validity of the result in the general case.

3.2 General Formulation

Introduce the Lagrangian density ψ(λ) as a function solely
of the eigenvalues of the structure tensor. Then, the cost func-
tional

E(u) =
∫

�

ψ(λ) d� (33)

is minimised by the Euler–Lagrange equations

∂i

(
∂ψ

∂uρ
,i

)

− ∂ψ

∂uρ
= 0. (34)

To derive the explicit form of the Euler–Lagrange Equa-
tion (34), we will need

∂ψ

∂uρ
= ∂ψ

∂λp

∂λp

∂skl

∂skl
∂uρ

(35)

∂ψ

∂uρ
,i

= ∂ψ

∂λp

∂λp

∂skl

∂skl
∂uρ

,i

, (36)

where the two first factors are common.
The first factor of the two expressions, ∂ψ/∂λp, can be

computed directly since the Lagrangian ψ is defined explic-
itly in terms of the eigenvalues of the structure tensor, and
will thus depend on the design of the Lagrangian density.

The second factor of the two expressions can be com-
puted implicitly following the method of Tschumperlé and
Deriche [4] as follows

δki δ
l
j = ∂skl

∂si j

= ∂λp

∂si j
θkpθ

l
p + λp

∂θkp

∂si j
θ lp + λpθkp

∂θ lp

∂si j
.

(37)

Multiplying with θkm and θ lm , summing over the k and l
indices, using that θkmθkp = δpm , and θkp(∂θkp/∂si j ) = 0,
the latter due to the orthonormality of the θs, give

∂λm

∂si j
= θ imθ

j
m (38)

(no sum).
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The last factors of the two expressions, ∂skl/∂uρ and
∂skl/∂u

ρ
,i are, in general, different from the Euclidean case:

∂skl
∂uρ

= ∂gμν

∂uρ
uμ

,ku
ν
,l (39)

∂skl
∂uρ

,i

= gρμ(δki u
μ
,l + δli u

μ
,k). (40)

Inserting Equation (38) to (40) into Equation (35) and (36)
gives

∂ψ

∂uρ
= ∂ψ

∂λp
θkpθ

l
p
∂gμν

∂uρ
uμ

,ku
ν
,l

= 1

2
Dkl ∂gμν

∂uρ
uμ

,ku
ν
,l (41)

∂ψ

∂uρ
,k

= 2
∂ψ

∂λp
θkpθ

l
pgρμu

μ
,l

= Dklgρμu
μ
,l , (42)

where the diffusion tensor

Dkl = 2
∂ψ

∂λp
θkpθ

l
p (43)

has been introduced. Inserted into the Euler–Lagrange Equa-
tion (34), this gives (showing some intermediate steps to
illustrate the index gymnastics leading to theChristoffel sym-
bols)

0 = ∂k

(
∂ψ

∂uρ
,k

)

− ∂ψ

∂uρ

= ∂k

(
Dklgρμu

μ
,l

)
− 1

2
Dkl ∂gμν

∂uρ
uμ

,ku
ν
,l

= gρμ∂k

(
Dkluμ

,l

)
+ Dkl ∂gρμ

∂uν
uμ

,l u
ν
,k

− 1

2
Dkl ∂gμν

∂uρ
uμ

,ku
ν
,l

= gρμ∂k

(
Dkluμ

,l

)

+ Dkl 1

2

(
∂gρμ

∂uν
+ ∂gρν

∂uμ
− ∂gμν

∂uρ

)

uμ
,ku

ν
,l

= gρμ∂k(D
kluμ

,l ) + Dklρμνu
μ
,ku

ν
,l ,

(44)

where ρμν = (∂gρμ/∂uν + ∂gρν/∂uμ − ∂gμν/∂uρ)/2
denote the Christoffel symbols of the first kind and the sym-
metries of both Dkl and gμν have been used between the third
and fourth lines.

Using the metric tensor to convert to contravariant vec-
tor components (‘raise the index’) and solving by gradient
descent gives the more convenient form for our main result,

∂uρ

∂t
= ∂k(D

kluρ
,l) + Dklρ

μνu
μ
,ku

ν
,l , (45)

where 
ρ
μν = gρκκμν denote the Christoffel symbols of

the second kind. In general, this constitutes a set of coupled
nonlinear partial differential equations.

It should be noted that the result is in complete agree-
ment with the results of Tschumperlé and Deriche [4] for the
Euclidean case where the Christoffel symbols vanish, and
with the results of Renner [36] for the isotropic case—also
in the casewhere themetric tensor is not diagonal, as required
in the proof of Renner—using ψ(λ) = φ(λ+ +λ−) = φ(s).

4 Discussion

4.1 Proof of Coordinate Independence

It is not obvious that Equation (45) is a tensor equation,
i.e. that it is independent of the choice of coordinates.
To prove that it indeed is, we will check how the Euler–
Lagrange equation transforms. Given coordinate change
vρ̄ = vρ̄(u1, u2, . . . , uM ). The chain rule gives

v
μ̄
,i = ∂vμ̄

∂uη
uη

,i . (46)

The chain rule applied to the second term of the Euler–
Lagrange equation gives

∂ψ

∂uρ
= ∂ψ

∂vμ̄

∂vμ̄

∂uρ
+ ∂ψ

∂v
μ̄
,i

∂v
μ̄
,i

∂uρ

= ∂ψ

∂vμ̄

∂vμ̄

∂uρ
+ ∂ψ

∂v
μ̄
,i

∂2vμ̄

∂uρ∂uη
uη

,i .

(47)

The chain rule applied to the first term of the Euler–Lagrange
equation gives

∂ψ

∂uρ
,i

= ∂ψ

∂v
μ̄
, j

∂v
μ̄
, j

∂uρ
,i

= ∂ψ

∂v
μ̄
,i

∂vμ̄

∂uρ
(48)

and

∂i

(
∂ψ

∂uρ
,i

)

= ∂i

(
∂ψ

∂v
μ̄
,i

)
∂vμ̄

∂uρ
+ ∂ψ

∂v
μ̄
,i

∂i

(
∂vμ̄

∂uρ

)

= ∂i

(
∂ψ

∂v
μ̄
,i

)
∂vμ̄

∂uρ
+ ∂ψ

∂v
μ̄
,i

∂2vμ̄

∂uη∂uρ
uη

,i .

(49)

By combining these formulas, we get

∂i

(
∂ψ

∂uρ
,i

)

− ∂ψ

∂uρ
= ∂vμ̄

∂uρ

[

∂i

(
∂ψ

∂v
μ̄
,i

)

− ∂ψ

∂vμ̄

]

. (50)
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The metric tensor gρμ transforms as

gρν = ∂vη̄

∂uρ

∂vμ̄

∂uν
gη̄μ̄ (51)

and the dual tensor gρμ transforms as

gρν = ∂uρ

∂vη̄

∂uν

∂vμ̄
gη̄μ̄. (52)

Therefore,

gρν

[

∂i

(
∂ψ

∂uν
,i

)

− ∂ψ

∂uν

]

= gρν ∂vσ̄

∂uν

[

∂i

(
∂ψ

∂vσ̄
,i

)

− ∂ψ

∂vσ̄

]

= ∂uρ

∂vη̄

∂uν

∂vμ̄
gη̄μ̄ ∂vσ̄

∂uν

[

∂i

(
∂ψ

∂vσ̄
,i

)

− ∂ψ

∂vσ̄

]

= ∂uρ

∂vη̄

(

gη̄μ̄

[

∂i

(
∂ψ

∂v
μ̄
,i

)

− ∂ψ

∂vμ̄

])

.

(53)

The last equality comes from δσ̄
μ̄ = ∂vσ̄ /∂vμ̄ = (∂vσ̄ /∂uν)

(∂uν/∂vμ̄)On the other hand, duρ/dt transforms in the same
manner,

duρ

dt
= ∂uρ

∂vη̄

dvη̄

dt
, (54)

showing that Equation (45) is indeed a tensor equation.

4.2 Connection with Sochen’s Framework

Sochen et. al. [37] allow the image coordinates to change.
Sochen’s coordinates σ 1 and σ 2 are not image points but
coordinates of an embedded manifold X : � → M repre-
senting the image, where � is the image plane and M is a
product of the image plane and a colour space.Also, Sochen’s
metric on � is not the metric inherited by the embedding
into M . Sochen uses lowercase Roman letters for the coor-
dinates of M and Greek letters for the coordinates in �. We
choose to use marked Greek letters for coordinates on M and
marked Roman lowercase letters for � to avoid confusion
with our notion. In our setting, M is the direct product of the
colour space and the image plane. In Sochen’s framework,
the image points are functions of time and these coordinates,
xi (σ 1, σ 2, t) = Xρ ′(σ 1, σ 2, t), i = ρ′ = 1, 2. Sochen’s
formulas (8) and (9) for i = 1, 2 therefore give

∂xi

∂t
= 1√

g

∂

∂σ i ′

(√
ggi

′ j ′ ∂xi

∂σ j ′

)

. (55)

Our colour coordinates u1, u2 and u3 are functions of x1, x2

and t . In Sochen’s framework, that corresponds to

Xμ+2(σ 1, σ 2, t) = uμ(x1(σ 1, σ 2, t), x2(σ 1, σ 2, t), t).

For ρ′ = 2 + ρ, ρ = 1, 2, 3, Sochen’s formula is

∂Xρ ′

∂t
= 1√

g
∂i ′(

√
ggi

′ j ′∂ j ′ X
ρ ′)

+ ρ ′
μ′ν′∂i ′ X

μ′∂ j ′ X
ν ′gi ′ j ′ .

(56)

Combining the chain rule ∂Xρ+2

∂t = ∂uρ

∂xi
∂xi
∂t + ∂uρ

∂t with Equa-
tion (55) and Equation (56) gives

∂uρ

∂t
= −∂uρ

∂xi
1√
g

∂

∂σ i ′

(√
ggi

′ j ′ ∂xi

∂σ j ′

)

+ 1√
g

∂

∂σ i ′

(√
ggi

′ j ′ ∂xi

∂σ j ′
∂uρ

∂xi

)

+ ρ
κγ

(
∂xi

∂σ i ′ g
i ′ j ′ ∂x j

∂σ j ′

)
∂uκ

∂xi
∂uγ

∂x j
,

(57)

where ν′ = 2+κ andμ′ = 2+γ . The product rule simplifies
the first two lines of the equation.

∂uρ

∂t
= gi

′ j ′ ∂xi

∂σ j ′
∂

∂σ i ′

(
∂uρ

∂xi

)

+ ρ
κγ

(
∂xi

∂σ i ′ g
i ′ j ′ ∂x j

∂σ j ′

)
∂uκ

∂xi
∂uγ

∂x j

(58)

Finally, applying the chain rule ∂

∂σ i ′ = ∂xi

∂σ i ′
∂

∂xi
, we obtain

∂uρ

∂t
= gi

′ j ′
(

∂xi

∂σ i ′ g
i ′ j ′ ∂x j

∂σ j ′

)
∂2uρ

∂xi∂x j

+ ρ
κγ

(
∂xi

∂σ i ′ g
i ′ j ′ ∂x j

∂σ j ′

)
∂uκ

∂xi
∂uγ

∂x j
.

(59)

With the choice Di j = gi j = ∂xi

∂σ i ′ g
i ′ j ′ ∂x j

∂σ j ′ , our method fits
in the Sochen’s framework. Notice that with this choice, the
inverse of Di j is not the inherited metric of the embedding
X.

4.3 Data Attachment

For the Euclidean case, data attachment is introduced as the
�2 or �1 norm of the colour differences, cf. Equation (27)
and (29). The norm is used to measure the difference of two
colours at, in general, two different positions of the colour
manifold. In Riemannian geometry, a closed-form expres-
sion for distance is, in general, only available infinitesimally
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through the metric, dl2 = gμνduμduν . Finite distances are
measured along the geodesic curve γ (t),

d(u, u0) =
∫ u

u0

√
gμνdγ μdγ ν, (60)

which in turn is found by solving the geodesic equation for
the geometry in question,

D2γ ρ

dt2
+ ρ

μν

dγ μ

dt

dγ ν

dt
= 0. (61)

In practice, these equations must be solved numerically,
see, e.g., Chevallier and Farup [40], adding significantly to
the complexity of the numerical solution. Fortunately, when
applying a pure anisotropic diffusion algorithm to regularise
an image, it is common practice not to consider any attach-
ment term to the data but only apply a finite number of
iterations until the level of regularisation is sufficient.

4.4 Special Case: Hyperbolic Geometry

For most actual Riemannian geometries, the full explicit
expression of Equation (45) will be very complex to imple-
ment due to the complexity of the Christoffel symbols 

ρ
μν .

However, in the special case of hyperbolic colour geome-
try, an explicit expression of the equations is within reach.
Consider the Poincaré half-plane modelR×H of hyperbolic
geometry with the coordinate substitution u0 �→ ln u0. The
nonzero components of the metric tensor (cf. Equation (5))
and its derivatives are

g00 = 1

g11 = g22 = α

(u2)2

g11,2 = g22,2 = −2α/(u2)3,

(62)

giving the nonzero Christoffel symbols

2
11 = 1

u2

1
21 = 1

12 = 2
22 = − 1

u2
,

(63)

which in turn give the Euler–Lagrange equations,

∂u0

∂t
= ∂k(D

klu0,l)

∂u1

∂t
= ∂k(D

klu1,l) − Dkl
2u1,ku

2
,l

u2

∂u2

∂t
= ∂k(D

klu2,l) + Dkl
u1,ku

1
,l − u2,ku

2
,l

u2
.

(64)

It should be noted that even for the presumably simple case of
isotropic non-local diffusion with ψ(λ+, λ−) = s/2 giving
Dkl = δkl , the resulting equations are coupled and nonlinear
for the two chromatic colour coordinates, in contrast with the
Euclidean case, where everything is linear and decoupled.

For data attachment in this special case of theR×H hyper-
bolic geometry, however, the following closed-form solution
of the distance, Equation (60), between two points is known,

d(u, u0)
2 = (u0 − u00)

2+

α2 arcosh2
(

1 + (u1 − u10)
2 + (u2 − u20)

2

2u2u20

)

.
(65)

Basing the data attachment term on this (in analogy to using
the �2 norm in Euclidean geometry) by adding

E = ω

2

∫

�

d(u, u0)
2 d� (66)

to the cost functional gives the following extensions to the
general Euler–Lagrange Equation (64)

∂u0

∂t
= ∂k(D

klu0,l) + ω(u0 − u00)

∂u1

∂t
= ∂k(D

klu1,l) − Dkl
2u1,ku

2
,l

u2

− ωα2 arcosh

(

1 + (u1 − u10)
2 + (u2 − u20)

2

2u2u20

)

×
⎛

⎝

(

1 + (u1 − u10)
2 + (u2 − u20)

2

2u2u20

)2

− 1

⎞

⎠

−1/2

× u1 − u10
u2u20

∂u2

∂t
= ∂k(D

klu2,l) + Dkl
u1,ku

1
,l − u2,ku

2
,l

u2

− ωα2 arcosh

(

1 + (u1 − u10)
2 + (u2 − u20)

2

2u2u20

)

×
⎛

⎝

(

1 + (u1 − u10)
2 + (u2 − u20)

2

2u2u20

)2

− 1

⎞

⎠

−1/2

× (u2)2 − (u20)
2 − (u1 − u10)

2

2(u2)2u20
.

(67)

Even more extensive expressions will result from the ana-
logue of the �1 case with the cost functional E =
ω

∫
�
d(u, u0) d�.
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5 Conclusion and FutureWork

The equations for anisotropic diffusion inRiemannian colour
geometry are derived both for the general case and for the spe-
cial case of hyperbolic geometry. This includes the possible
treatment of a data attachment term. The non-trivial con-
nection with Sochen’s framework [37] is elaborated. Several
other well-known solutions appear as special cases.

Future work should look into applying the technique to
various real-life colour imaging applications such as image
denoising, image inpainting, and colour filter array demo-
saicing using the most up-to-date colour geometries. This
includes the development of computationally efficient algo-
rithms for solving Equation (45) numerically for real cases,
which is not a straightforward and trivial task. An extension
to gradient domain image processing, requiring a method to
deal with gradients defined in different tangent spaces of the
colour manifold, remains an open research question.
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