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We investigate if there is any inertial dragging effect a~sociated with vac- 
uum energy. Spacetime inside and outside a rotating thin shell, as well as 
the mechanical properties of the shell, axe analyzed by means of Israel's 
general relativistic theory of surface layers. Our investigation general- 
izes that of Brill and Cohen, who found vacuum-solutions of Einstein's 
field equations (with vanishing cosmological constant), inside and out- 
side a rotating shell. We include a nonvanishing vacuum-energy inside 
the shell. It is found that the inertial dragging angular velocity increases 
with increasing density of vacuum energy. 

1. INTRODUCTION 

Vacuum-energy has some remarkable, and well-known, gravitational prop- 
erties. Together with the Lorentz invariance of vacuum Einstein's field 
equations imply that  vacuum acts upon itself with repulsive gravity. It 
seems, however, that  the inertial dragging properties of vacuum have not 
been investigated. The reason may be that inertial dragging, i.e. the 
Lense--Thirring effect, is usually associated with rotational motion, and 
the Lorentz invariance of the vacuum implies that vacuum-energy is non- 
rotating. However, it has sense to say that  vacuum-energy has expansion. 
At the end of the inflationary era this expansion is transferred to radia- 
tion and matter,  and this may explain the observed state of expansion of 
the universe. Likewise the observed absence of cosmic rotation may be 
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due to the non-rotation of the vacuum-energy in the vacuum-dominated 
inflationary era [1]. 

In this article we investigate the possibility that  the vacuum-energy 
may have determined the large scale motion of the universe in a Machian 
way, by means of a mechanism involving the inertial dragging effect. This 
possibility depends upon the answer to the question: "Is there any inertial 
dragging effect associated with vacuum energy?" In order to approach this 
question we generalize the classical investigations of Lense and Thirring 
[2] and later of Brill and Cohen [3,4], where they established the existence 
of the rotational inertial dragging effect, and noted its possible cosmic 
significance. 

2. INERTIAL D R A G G I N G  INSIDE A ROTATING SPHERICAL SHELL 

Brill and Cohen [3] found the spacetime line-element inside and out- 
side a thin shell rotating with angular velocity ws. They expressed the 
line-element in isotropic coordinates and found 

ds 2 = V2dt 2 - r + 42{d~ 2 + sin s 0(dr - ~(4)dt)2}] (1) 

with 

( ( 4  -- M / 2 ) / ( 4  + M/2) ,  
V = (40 - M/2) / (4o + M/2) ,  

r = 1 l + M / 2 r ,  4 > 4o 
1+ M/24o, 4 < 4o 

4 > 40 (2) 
4 < 4 0  

(3) 

where M and 40 are the mass and radius of the shell, respectively. The 
function fl(4) is the angular velocity of the inertial dragging field. It is 
given by 

~(4) = { nB (4~162176162 4r >< 40r0 (4) 

where 
3(~o-_M127.'~ 

f ~ B = W s /  l + 4 M ( 4 0 _ M / 4 ) ) .  (5) 

This result has some interesting properties. First of all it reduces to 
the result 

4Mws ~B = - -  (6) 
340 

of Lense and Thirring [2] in the weak field limit, i.e. to first order in 
M/40. Also it was noted by Brill and Cohen [4] that  'perfect dragging', i.e. 
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~ B  ---- w s  - -  the induced rotation inside the shell equals the rotation of the 
shell - -  is possible. It  occurs if the shell is positioned at its Schwarzschild" 
radius, 40 = M/2.  A shell of mat ter  of radius equal to its Schwaxzschild 
radius may be taken as an idealized model of our universe. In such a model 
there cannot be 'a rotation of the local inertial frames relative to the large 
masses in the universe. The result of Brill and Cohen may thus explain, 
in a Machian way, the observation that  the swinging plane of a Foucault 
pendulum docs not rotate relative to the stars. 

In the present article we generalize the investigation of Brill and Cohen 
by including vacuum energy inside the rotating shell. 

3. V A C U U M  E N E R G Y  

There is now a great literature on inflationary cosmological mod- 
els [5,6]. In most of these models the vacuum energy is due to a scalar 
field r with Lagrangian density 

L = - v ( r  (z )  

where the potential V(r is typically of the Coleman-Weinberg form for 
the SU5 Higgs field. The energy-momentum tensor for this field is 

T~v = - r162  - s  (8) 

Assuming that  the universe model is spatially homogeneous, T~,~ takes 
the perfect fluid form with energy density and pressure given by 

1 "2 1~2 p = ( ~ r 1 6 2  p = ( ~  ) - V ( r  (9) 

A perfect fluid with Lorentz invariant properties shall here be called a 
'vacuum fluid'. Demanding that  the components of the energy-momentum 
tensor be Lorentz invariant leads to the form [7] 

T , v  = P v g , ~  (10) 

where the energy density P v  is in general a function of the four space- 
time coordinates. In a spatially homogeneous universe model the density 
measured by an observer can at most depend upon the time coordinate. 
Due to the relativity of simultaneity the homogeneity of space is Lorentz 
invariant only if Pv -- constant? In the present work we shall consider a 
universe model which fulfills this condition. 

2 Editor's note: Equation (10) and the conservation law T'~v ---- 0 already imply 
pv ---- constant without further conditions. 
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Comparing the form (10) of the energy-momentum tensor with that  
of a perfect fluid 

T~ = (p + p ) ~  - p g ~  (11) 

we find that  the equation of state for a vacuum fluid is 

P v  = - P v  . (12) 

As to the effect of the scalar field upon the spacetime geometry, this field 
acts as a combination of a vacuum fluid and a Zel'dovich fluid (a stiff fluid 
with sound velocity equal to the velocity of light) with equation of state 

P z = p z = < ~  ). (13) 

General relativistic models of spacetimes with vacuum energy inside 
and outside nonrotating spherical singular shells have been thoroughly 
investigated [8-12]. The effect of the vacuum energy outside a static shell 
is only to modify the equation of state for the matter  that  the shell consists 
of. In our approach, based upon a perturbation of the static situation, 
and for our intention, which is to investigate the effect of the vacuum 
energy inside a rotating shell (i.e. inside our universe) upon the motion 
of inertial frames in this region, it will be suitable to assume vanishing 
vacuum energy outside the shell. Also the Zel'dovich component of the 
energy-momentum vanishes in a stationary situation, which is considered 
in the present investigation. 

4. ROTATING SHELL CONTAINING VACUUM ENERGY 

In the static case there is de Sitter spacetime inside the shell and 
Schwarzschild spacetime outside it. The.~shell is assumed to rotate slowly, 
and the effect of the rotation is introduced as a perturbation of the static 
metric. The line-element is now written 

where 

and 

d r  2 
ds2 = g(r)dt2 f ( r )  r2{dO2 + sin2 O(dr - ~'l(r)dt) 2} 

= f 1 - 2 M I r  = fl~, r > ro d(r)  
1 - 8~pr2/3 - fiE, r < r0 

(14) 

(15) 

{~, r > ,'o (16) 
g(r) = (~So~O/~Do). ' r < to. 
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Here p is the constant energy density of vacuum, and the subscript 0 
indicates the value at the shell, i.e. at r -- r0. The mass M inside r -- r0 
is part ly due ~o the vacuum energy, and partly to the shell. 

Both outside and inside the shell the 03-component of Einstein's field 
equations reduces to 

rf/II -I- 4f/I ---- 0. (17) 

Integrating this equation, demanding non-singularity at r = 0, vanishing 
dragging angular velocity at infinity, and continuity across the shell, we 
obtain 

f~= { ~p(ro/r)  3, r > < ro. (18) 

The constant f i r  will now be calculated by means of Israel's general rel- 
ativistic theory [13] of singular surfaces in terms of the radius, mass and 
angular velocity of the shell. 

Let V -  ~.nd V + be the spaces inside and outside the shell, ~., re- 
spectively. The way ~ curves in V -  or V + is described by the extrinsic 
curvature tensor with components 

Kij = -h id  = -ni , j  + nkFkij (19) 

where n is the unit normal vector of E. Let K + denote the value of Kij 

in V +, and K~ its value in V - .  Introduce K + = giJK+ and 

[g,j] = g + - g 6 ,  [g] = g + - g - .  (20) 

The energy-momentum tensor of the shell is given by 

1 
S,j = -~-~ ( [gij] - g,j[g] ). (21) 

The components of the energy-momentum tensor may be interpreted 
physically by the following procedure. The eigenvalues A(k) and eigenvec- 
tots v(k) of this tensor are given by 

and 

]Sij - A(k)6ijl = 0 (22) 

�9 j 
S~jv(k) = A(~)~k) (23) 

where the vertical bars denote the determinant, and the subscript in the 
parenthesis is only a tag telling 'which vector' and does not denote the 
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component of a vector. Equation (22) represents a third degree equation 
for A with roots A(0, ~(0), A(r Equation (23) gives the three associated 
eigenvectors v(t), v(o), v(r It  follows from eq. (23) and the symmetry of 
the energy~momentum tensor that  they are orthogonal. They are fixed 
by choosing them to be unit vectors. These vectors then represent an 
orthonormal basis-field at the source. The components of S are now given 
the following physical interpretation. The vector v(t) = u is the four- 
velocity field of the shell. The eigenvalue ~(t) = a is the energy-density 
as measured by an observer comoving with the shell. The eigenvalues 
~(k) = --P(k), k ---- 1, 2 are the negative of the stresses he measures. 

We shall later need the following decomposition of the energy-momen- 
tum tensor of the shell 

2 

S~j auiuj + ~_~ v ~ (24) = P(k) (k)V(k)j " 
k~-I 

Calculating the components of the energy-momentum tensor of the 
shell from eq. (14) and the line-elements in eqs. (14)-(16), we find 

S t  = f~Do -- f~So 
4rr0 ' (25) 

{ ( M 87rpr2~'~ (26) 
s ~  = s %  = - - 

ap ( _ ~  M 8vp,~'~ (27) 

In order to relate the components of the energy-momentum tensor to 
the physical properties of the shell, we may use the decomposition (24) 
of the energy-momentum tensor. "We need to find the vectors u and v(k). 
The four-velocity of the points on the shell is 

u ~ = (1, 0, wS)l i~So 2 - r02 sin2(ws - tip)2 . (2s) 

To first order in ws and 12p the four-velocity is 

u i = (1,O, ws)/~So. (29) 

The two vectors v(k) must be chosen so that  they are mutually orthogonal, 
normal, and orthogonal to u. Choosing 

v(0) = (r0, l / to,  0) (30) 
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leads to 
?J~b) --~ ( t O # S o - 2 (  WS --  ~'~P) s in  O, 0,  (1" 0 Sill o ) - l ) .  

From eq. (24) we now find to first order in the angular velocities 

S i t  = (T, 

See = Sr162 = -p ,  

Set  = ws(a  + p). 

(31) 

(32) 

(33) 
(34) 

Comparing the~se expressions with those in eqs. (25)-(27) we obtain 

#~o - #so (35) 
ff - -  47rr 0 ' 

1 ( U 8~rpr~ a 

P= s-~-g~o .~0--~o + 3#~0 ) 2 '  
(36) 

~__~p = 81r(a + p) (37) 
ws 41r(a + 2p) + #so/2ro + #Do/r0 ' 

or equivalently 
g~p = #so - 13Do (1 -- 3M/ro)  (38) 
•s  #so - #Do l2  

It may be noted that  there is no inertial dragging inside a spherical domain 
wall, which has p -- - a .  

5. DISCUSSION 

We shall first consider some special cases. If we put the shell at the 
position 

( 3 M ~  1/3 (39) 
r~ = \s---~p) 

then 
#So = #~o = ~/1 - M / r o  (40) 

and the components of the metric tensor are continuous across the shell. 
Inserting this into eqs. (29), (37) and (38) we get 

M ~p  2M 
- -  = (41) 

~'------ O, P - 4~r~#o ' ws ro 

This situation must be considered rather unphysical since the rest mass 
density of the shell vanishes. 
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Let us now compare our result with that  of Brill and Cohen [3]. They  
considered a rotating shell with vanishing energy density in its interior. 
Inserting p = 0 and/3Do - 1 into eq. (38) gives 

~__ffP = ~So + 3 M / r o  - 1 
+ 1/2 ' (42) 

which looks different from the result of Brill and Cohen, eq. (5). However, 
our result is expressed in Schwarzschild coordinates while eq. (5) is valid 
in isotropic coordinates. The isotropic radial coordinate is related to the 
Schwarzschild coordinate by the transformation 

r = f(1 + M/2~) 2. (43) 

Using this in eq. (42), eq. (5) is recovered. 
We shall now discuss the conditions for 'perfect dragging'. In the case 

considered by Brill and Cohen eqs. (35) and (36) reduce to 

1 - ~So ~So + M / r o  - 1 (44) 
a =  4~rr-----~ ' P =  81rr0/3So 

Perfect dragging inside the shell happens for r0 = 2M, i.e./3So = 0, which 
leads to a = 1 / 8 r M ,  p = oo. 

~'~p/t,~J~ I 

0.8 

0.6 

0.4 

0.2 

4 6 8 
i 

I0 

ro/M 

Figure I. Angular dragging velocity in the interior of the shell as function of the 
radius of the shell for different values of the vacuum energy density. The lowest curve 
corresponds to p = O. 
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In  t he  genera l  case, w i th  non-vanishing vacuum energy inside the  shell, 
we re fo rmula te  eq. (38) for the  iner t ia l  dragging  angular  veloci ty  as follows: 

P 3flDo flSo 2 
- -  = 1 . ( 4 5 )  
wS 2flso +/~Do 

This  express ion  shows t h a t  for M > 0 and p > 0 we mus t  have ~ p  < w s ,  
i.e. we canno t  have 'over-perfec t '  dragging.  

T h e r e  are  now two possibi l i t ies  t h a t  lead to  perfect  dragging:  e i ther  
flso = 0, i.e. r0 = 2 M  which leads  to  a = flDo4~rr0, p = oo, or flDo = 0, 
i.e. ro = X/~/87rp which leads to  a = -13so/47rro, p --  oo. Bo th  wi th  and 
wi thou t  vacuum energy  inside t he  shell, perfect  dragging  only happens  
when the  s t resses  in t he  shell  diverge. Thus  perfect  dragging  only  takes  
place  in a phys ica l ly  unob ta inab l e  l imi t ing  case. 

In  F igu re  1 we have p lo t t ed  the  re la t ive  dragging  angular  veloci ty  
in the  in ter ior  of t he  shell  for different values of  the  energy density. We 
see t h a t  t he  d ragg ing  angular  veloci ty  increases wi th  increasing vacuum 
energy  densi ty,  i nd ica t ing  t h a t  th is  energy cont r ibu tes  to  the  dragging.  
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