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Abstract

The wireless capsule endoscope (WCE) is a pill-sized device taking images, which are transmitting to an on-body
receiver, while traveling through the digestive system. Since image data is transmitted through the human body,
which is a harsh medium for electromagnetic wave propagation, noise may at times heavily corrupt the reconstructed
image frames. A common way to combat noise is to use error-correcting codes. In addition one may also utilize inter-
and intra frame correlation to reduce the impact of noise at the receiver side, placing no extra demand on the WCE.
However, it is then of great importance that the chosen post processing methods do not alter the content of the
image as this can lead to miss-detection by gastroenterologists. In this paper we will investigate the possibility for
additional noise suppression and error concealment at the receiver side in a high intensity error regime. Due to the
high correlation generally inherent in WCE video, satisfactory results are obtained, as concluded from both subjective
tests with gastroenterologists as well as the structural similarity (SSIM) metric. More surprisingly, the subjective tests
indicate that the inpainted frames in many cases can be used for clinical assessment. These results indicate that one
can apply error reduction through post processing together with error-correcting codes to obtain a more
noise-robust system without any further demand on the WCE.

Keywords: Wireless capsule endoscope, Error reduction and concealment, Image post processing, Subjective
testing, Ultra wide band, SSIM

1 Introduction
Severe diseases in the digestive system like inflammatory
bowel disease and cancer reduce the quality of life, or even
the length of life, in a huge number of patients. In Europe,
colorectal cancer is the second most common cause of
cancer death [1]. One way to detect such diseases at an
early stage, is to make screening of the digestive system a
common procedure beyond a certain age. However, fear
of pain and difficulties caused by screening methods like
colonoscopy [2], is a major factor limiting the number of
people who would volunteer for such screening. In order
to motivate as many people as possible to perform pre-
emptive screening, it is vital that the procedure is not
unpleasant.
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Wireless capsule endoscopy (WCE) is a good option for
screening of the digestive system since it is less unpleas-
ant than traditional methods like colonoscopy and gas-
troscopy. The drawback with current standard WCEs is
the low resolution of images as well as the framerate that
can be supported given the power capability of the small
battery carried onboard [3]. Since the human body is
a poor transmission medium for electromagnetic waves,
some frames will also be heavily corrupted by noise.
One way to cope with the larger amount of data that

would result from increased frame rate and image resolu-
tion is to apply compression algorithms that reduces the
large correlation among pixels typical for WCE frames,
without introducing visible distortions. One such algo-
rithm was proposed by Kim et. al. in [4]. It is also possible
to obtain higher transmission rates through the human
body over current standard WCEs without increasing the
transmission power by using ultra wide band (UWB)
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communication [5, 6]. This can further allow for an
increase in the frame rate.
One will still face problems with heavy noise corrup-

tion of some frames: human organs have varying dielectric
properties that may cause rapid increase in attenuation
due to scattering [7] implying bad reception and thereby
severe distortions due to noise. At a certain thresh-
old named channel outage, all communication becomes
impossible [8]. To cope with these problems, it is common
to apply error-correcting codes. An additional possibil-
ity that places no further demand on the WCE are post
processing techniques at the receiver (located outside the
body) where there are no significant restrictions on power
usage and computational complexity. Typical WCE video
sequences have significant inter- and intra-frame redun-
dancy which can be utilized to suppress noise, conceal
and remove errors (in a similar way as redundancy in
error-correcting codes are utilized).
If one can find post processing techniques of acceptable

quality, which does not introduce false artifacts into the
image frames, one can obtain a more noise-robust WCE
system through combination with state-of-the-art error-
correcting codes.
In this paper, we demonstrate that the error scenar-

ios mentioned above can be dealt with in a satisfac-
tory manner through post processing at the receiver
side using combinations and variants of known inpaint-
ing algorithms. We analyze both non-compressed and
compressed video transmitted using UWB communi-
cation over the abdominal channel model derived in
[7, 9]. The algorithms are assessed through (1) subjec-
tive tests by gastroenterologists, and (2) objective tests
through the structural similarity (SSIM) metric [10]. To
our knowledge, few existing efforts consider error reduc-
tion through post processing for WCE applications, espe-
cially for UWB-based systems. Kim et al. addresses this
issue in [11], but different from that effort, we deal with
high error density.
The paper is organized as follows: in Section 2, the sys-

tem block diagram and simulation setup are presented.
In Section 3, the relevant post processing methods are
presented and analyzed. In Section 4, we evaluate the pro-
posed methods both by subjective and objective tests and
discuss the results. Conclusions are given in Section 5.

2 Simulation setup
The architecture of a typical WCE device is usually based
on known algorithms [12]. In this paper, we provide
results for a specific choice of encoder, modulator, and
channel model. Figure 1 shows the relevant communica-
tion system.
The video source is images taken from PillCam� Colon

[13], that is, current standard WCE images. From a futur-
istic perspective, it would be convenient to analyze high

definition (HD) images. However, HD WCE images are
not yet available as this require new imaging sensors.
On the other hand, another likely future improvement
of WCEs would be increased framerate using same sized
images.
The main problem with currently available pillcam

video streams is that they are already processed (i.e.,
it is difficult to obtain raw format images), for exam-
ple, through compression. This is disadvantageous with
respect to assessment of new compression schemes and
therefore also inpainting methods constructed for par-
ticular compression methods (as we will come back to
later).
The RGB data is transformed to luminance and chromi-

nance components (YUV) using the transform proposed
in [14]. This transform is constructed for integer process-
ing, making it less computational demanding, and thereby
suitable for WCE application.
When the compression stage is included, compression

is performed frame by frame using the algorithm in [4],
which is based on differential pulse-coded modulation
(DPCM). DPCM is built around simple prediction fil-
ters and reduces correlation among pixels. This simple
scheme has demonstrated a compression ratio of 95% for
colonoscopy frames where decent quality is still provided
in the decompressed frames [4].
Further, we assume direct modulation of the video

sequence, or the compressed data sequence, using pulse-
position modulation (PPM). In PPM, amplitude levels are
represented as the position of a pulse in time within
some fixed (symbol) time window (see [15, 364–373] for
illustrations). When a large bandwidth is available, the
temporal pulses can be made sharper and several bits can
be coded into each pulse without increasing the symbol
power, making PPM a simple and power efficient mod-
ulation scheme, especially when higher rates are needed
in a power limited scenario. The performance of PPM for
UWB in-body to on-body communication is evaluated in
[5] and [16].
We will apply the 3.4 − 4.8 GHz UWB channel model

for the human abdominal region from [7, 9] throughout.
UWB communication can potentially facilitate larger data
rates than narrowband systems applied in current WCE
standards at low transmission power [5, 6]. The human
body is a harsh medium for electromagnetic waves with
high attenuation and scattering that may lead to rapid
reductions in data rate as well as outages. However, the
channel is also multipath, meaning that several replicas
of the signal can be received at different on-body loca-
tions. The effect of severe channel conditions can then
be reduced using multiple receiver antennas, effectively
increasing the average datarate [17].
Each receiver antenna corresponds to a communica-

tion path, or receiver branch, that picks up a replica



Floor et al. EURASIP Journal on Image and Video Processing         (2020) 2020:14 Page 3 of 15

Fig. 1WCE communication system. The compression stage (green block) will be excluded in many examples

of the signal. Each receiver branch uses a matched fil-
ter [15, p.413–417] to maximize the signal-to-noise ratio
(SNR) of the received UWB signal. With multiple receiver
branches, diversity [18, pp. 307–308] can be exploited
to further improve the SNR. Here, maximum ratio com-
bining [18, pp. 312-313] is applied. In maximum ratio,
combining the matched filter output is multiplied by the
corresponding channel gain, and by doing so, the sig-
nal from each receiver branch is weighted by a factor
that is proportional to its strength. That is, contributions
from a good branch is strengthened while the poor ones
are weakened. After combining, the PPM symbols are
detected and converted to bit streams.
Ideally, the algorithms should be tested in real time.

However, as no pillcam prototype for UWB communi-
cation yet exists, we have to rely on a simulator of the
system. We will use the simulator described in [16] apply-
ing PPM modulation, the above UWB channel, as well as
a multiple antenna receiver as described above. The sim-
ulator simulates a moving device through the abdominal
model in [7, 9]. The reader may consult [16] for a detailed
description of the channel simulator. Note that for proof
of concept, we have opted out channel coding in the sim-
ulations. The advantage of using a simulator is that one
can enforce many non-ideal scenarios on the datastream
in a controlled manner, and thereby more easily identify
possible error scenarios for the relevant application.
Post processing is the focus of this paper, where variants

of known methods are combined in order to reduce and
conceal errors introduced through the above simulation
framework. In addition to comparing original and cor-
rected images through subjective tests by gastroenterolo-
gist in Section 4.1, we will apply the SSIM metric [10] to
assess the quality of reconstructed frames. The SSIMmea-
sures the similarity between two images, which for our
investigation is original versus noisy- or inpainted image.
The SSIM score is within the range [ 0, 1] where ’1’ implies
identical images and ’0’ implies no correspondence.

Throughout the paper, we will present SSIM values
based on the “Y-channel,” that is, the luminance channel
(or frame) in the luminance/chrominance decomposition
performed by the RGB to YUV transform in Fig. 1. SSIM
values will be displayed together with each example image.
The mean SSIM score for each method based on a given
set of images is provided in Section 4.2. The reason
why we choose to assess SSIM for the Y-channel is that
the majority of the images energy lies in the Y-channel.
That is, it is the most crucial channel when it comes
to reconstruction of structures and objects in the image.
The chrominance (U and V) channels are mainly about
color reconstruction. As gastroenterologists are very crit-
ical to color changes, the best way of assessing the color
reconstruction for WCE application is through subjec-
tive testing with experienced gastroenterologists (which
we perform in Section 4.1).

3 Post processingmethods
We consider two scenarios: (I) single pixel errors appear-
ing with high density due to bad reception. (II) Error
blocks due to channel outages where significant parts of a
frame is missing.

3.1 Scenario i: spatial inpainting
The drawback of PPM modulation is that it may intro-
duce large decoding errors, named anomalous errors, if
the channel deteriorates from the optimal operation point
(any two symbols may be exchanged with equal likeli-
hood) [19, p. 627]. However, in images, anomalous errors
will be close to salt and pepper noise, which can be
efficiently reduced by known spatial inpainting methods
utilizing intra frame correlation.

3.1.1 Uncompressed frames
We applymedian filtering (MF) [20], which can cope with
a salt and pepper noise density up to 50% [21, p.200].
A median filter runs over the entire image replacing
each pixel with the median of pixel values in a certain
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neighborhood of the relevant pixel [20]. We consider a
quadratic (n × n) neighborhood of pixels for the median
computation here.
Figure 2 shows the original image, the same image cor-

rupted by errors from the relevant simulation model, and
the median filtered versions using 4 × 4 and 5 × 5 pixel
blocks. The reconstruction is quite good, which is also
confirmed by the SSIM values: 0.93 for 4 × 4 blocks and
0.96 for 5 × 5 blocks. These values are inline with the
average SSIM provided in Section 4.2.1.

3.1.2 Compressed frames
For compressed frames, salt and pepper-like noise will
be added in the compression domain. As the image is
decompressed, distortions will be created.
Figure 4a shows the reconstruction of a DPCM com-

pressed version of Fig. 2a. The algorithm [4] introduces
certain artifacts into the frames. Since about 96% of the
original data has been removed, the algorithm is quite
good (note also that this algorithm was designed for
HD colonoscopy images). However, a great deal of these
artifacts likely appear due to the fact that the available
videostreams for WCE is already compressed (blocking
artifacts are observed when the image is magnified, and
these correspond to location of the DPCM related arti-
facts). This is reflected in the SSIM between original and

compressed frame which is around 0.8 − 0.85. In com-
parison, the same algorithm provides a SSIM of about
0.9 − 0.95 for HD colonoscopy images. This implies that
the relevant compression algorithm does not have a good
representative for original compressedWCE image. A fair
subjective test is therefore hard to obtain in this case.
Since the DPCM decoder is a recursive filter [4], errors

will have “tails” in each image dimension, resulting in
the corner-like artifacts shown in Fig. 4b. As shown in
[11], when the density of errors is low, they can be fully
concealed by first using a corner detector in the decom-
pressed image, like the Harris detector [22], then go back
to the compression domain and insert one of the neigh-
boring pixels in the corresponding (corrupted) pixel loca-
tion. With numerous errors, as in Fig. 4b, this method
mostly fails as seen in Fig. 4c. A median filter will also fail
as it smoothens the compressed image, leading to severe
decompression errors.
A way to cope with a high density of errors is through

total variation (TV) inpainting [23] in the compression
domain, as the noise there is close to salt and pepper noise.
Figure 3 depicts our approach to spatial inpainting of com-
pressed frames. As suggested in [21, pp. 201–202], TV
inpainting can reduce such errors without smoothening
other parts of the image as follows: with �c, the com-
pressed image domain, and Dc the inpainting domain (the

Fig. 2 a Original WCE image. bWCE image with massive errors from UWB PPM simulation. SSIM = 0.05 c Corrected image: 4 × 4 median filter. SSIM
= 0.93. d Corrected image: 5 × 5 median filter. SSIM = 0.96
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Fig. 3 Block diagram for spatial inpainting of single pixel errors in compressed frames

set of noisy pixels given in (2)), let v0 denote the com-
pressed noisy image on�c. We seek the image v on�c that
is the minimizer of [23]

E[ v|v0,Dc]=
∫

�c
|∇v|dx + λ

2

∫
�c\Dc

|v − v0|2dx, (1)

where λ controls the degree of noise reduction in v0
outside the inpainting domain Dc, which is given by

Dc = {x|v0(x) ≥ C1 ∨ v0(x) ≤ C2}. (2)

For salt and pepper noise C1 = max(v0) and C2 =
min(v0). Since the noise resulting from PPM modula-
tion is not exactly salt and pepper noise, we set C1 =
max(v0) − ε1 and C2 = min(v0) + ε2, where ε1 and
ε2 are determined for a relevant set of images. ε1 and
ε2 cannot be chosen large enough for all noisy pixels to
be contained within Dc without introducing blur in the
compressed frame. This will be most problematic in very
light or dark areas of the image. A “blob detection” algo-
rithm (like “difference of Gaussians”) [24] can be applied
to detect what sets of pixels has the lightest and dark-
est values, then ε1 and ε2 can be adjusted from that. As
the output from the DPCM coder has a Laplace-like dis-
tribution, this method works quite well, as we will see in
Section 4.2.2 where more examples are provided. Since
errors residing outsideDc are small and all blur introduced
in the compressed frame leads to a bad reconstruction, a
large λ should be chosen in Eq. (1). One may obtain fur-
ther quality enhancement through the algorithm in [11]
described above after TV inpanting. That is, by corner
detection in the reconstructed image followed by pixel
adjustment in the compression domain.
The result is shown in Fig. 4d. Although most of the

prominent corners are removed and coarse details in
the image are enhanced, there are still some false arti-
facts present due to smaller errors residing outside Dc
in Eq. (2). These false artifacts are likely the reason why
the SSIM is not larger than 0.87. We will provide a more
thorough analysis of SSIM for this inpainting method in
Section 4.2.2.

3.2 Scenario ii: temporal inpainting
The method proposed here is the same for compressed
and uncompressed frames. We consider uncompressed
frames.

If significant parts of a frame is missing, then large
inpainting errors are unavoidable with spatial inpainting
since the inpainting domain becomes too wide [25]. We
utilize interframe correlation in a temporal inpaiting strat-
egy to cope with this situation: if neighboring frames are
close enough content wise, then missing regions can be
inserted from one of them. The advantage of this approach
is that possible malign tissue that may become invisible
due to an error block will become visible in the corrected
frame, as information will be inserted from a neighboring
frame. That is, information about malign tissue is not lost,
and no false artifacts should be introduced.
The proposed scheme is depicted in Fig. 5. First cor-

rupted parts of a frame is detected using the Harris
detector. Due to capsule movement, the same features will
seldom be located at the same coordinates and perspective
on the screen in different frames. To align the two images
so that their common features are located at the same set
of coordinates, one can use a homography transform H.
That is, pixel coordinates of (past or future) frames In+1
or In−1, denoted x, are warped onto the coordinates of
image In as x̃ = Hx. Past frames can often cover the whole
inpainting region at the cost of some blur as the WCE
often moves closer to the background scene as it pro-
gresses through the digestive system. Future frames may
not cover the whole inpainting region, but can be made
as sharp as the original frame. We provide examples using
past frames in the following.
H has to be estimated from the relevant frames. There

are two main ways to do this: (I) direct (pixel-based)
method which is described in [26]. (II) Estimate common
features using the scale-invariant feature transform (SIFT)
algorithm [27], then select the best matches (inliers) and
find the best fit to H using the random sample consen-
sus (RANSAC) algorithm [28]. I is likely the least complex
method. However, we use method II here since it can
determine an accurate H even from small overlapping
regions of two images [26, pp. 15–33]. This implies thatH
can be found even when large parts of a frame is missing
due to outage.
We applied the MATLAB implementation of SIFT, as

well as other supporting functions, from the VLFeat
library [29] in order to do the computations. Since certain
artifacts due to compression and noise may be mistaken
as features, it is important to make the SIFT algorithm
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Fig. 4 a Decompressed WCE image. SSIM w.r.t. original in Fig. 2a is = 0.8. b Decompressed image with errors. SSIM = 0.75 c Corrected with corner
detection. SSIM = 0.76. d Corrected with TV inpainting (compression domain) and corner detection. SSIM = 0.86

favor larger features. Therefore, we set a large “Win-
dowSize” (variance of the Gaussian window), that is 4
units of spatial bins [29] (other parameters were set to
default). Good matches were then found, as illustrated
in Fig. 6.
Due to luminance differences between the original

image and the inpainted part, edges may appear (see
Fig. 7c). These can be removed through Poisson editing
[30]: with �, the image domain, and D the inpainting
domain with boundary ∂D, let u0 denote the available
image information on � − D and �v be some “guiding”
vector field on D. We seek the image u on D that is the
minimizer of [30]

min
u

∫
D

|∇u − �v|2dx, u|∂D = u0|∂D. (3)

The last condition ensures continuity over the boundary
of D. Now let fD = {In−1(x̃)|x̃ = Hx ∈ D}, i.e., the part
inside D which is mapped from the neighboring image.
Then, we can set �v = ∇fD.
Figure 7 shows the original image, an image with large

error blocks in Y, U ,and V channels as well as the recon-
structed image. We have estimated the homography from
the Y channel as depicted in Fig. 6. The SSIM for the noisy
image is around 0.55, whereas the corrected image has a
SSIM of = 0.93. In comparison, by applying (spatial) TV

Fig. 5 Block diagram for suggested temporal inpainting scheme for error blocks
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Fig. 6 EstimatingH for a highly corrupted frame. Upper: Matching SIFT features. Lower: inliers after RANSAC

Fig. 7 Correction of error blocks. a Original WCE image. bWCE image with error blocks in Y, U, and V channels. SSIM = 0.55 c Corrected image using
H. SSIM = 0.91 d Corrected image usingH and poisson editing. SSIM = 0.93
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inpainting within the same noisy frame a SSIM value of
0.83 is obtained. These values are in line with the average
SSIM presented in Section 4.2.
One may also apply the chrominance channels, U or V

(from the RGB to YUV transform in Fig. 1), to estimate
H if frame from the luminance channel Y is destroyed.
This yields additional noise protection. However, since the
energy in U or V is significantly lower, the accuracy of H
may be less than that obtained with the Y channel.
It is important to note that H can only compensate for

the WCE’s movement, or rigid motion in general. When
there are movements in the background due to muscle
contractions etc., there will be distortions in the recon-
structed frame. One may use optical flow [31] computed
from neighboring frames to compensate for suchmotions,
or techniques developed in so-called non-rigid structure
from motion algorithms [32]. Still, it will be hard to obtain
stable transforms among images if the correlation (i.e.,
similarity of image content) is too low, which will be the
case when the WCE undergo rapid movements. However,
it is likely that future WCE’s will have higher framerate,
making the above algorithm perform better in general.

3.3 Occurrence of single pixel errors and error blocks
simultaneously

Single pixel errors and error blocks may both occur in the
same image. There are two approaches to this problem:
(i) deal with single pixel errors first and (ii) remove error
blocks first.
Experiments clearly showed that approach (i) was the

only functioning option: Although SIFT followed by
RANSAC is very robust to noise in the images (as these
are singled out as outliers through RANSAC) we get into
trouble when we try to decide the area in the image that
should replace error blocks. This since the corner/line
detector becomes confused by the salt and pepper-like
characteristic of the single pixel errors.
The result of approach i) is shown in Fig. 8. One can

observe that the combined algorithm is capable of coping
with both scenarios simultaneously. The SSIM is about the
same as it was for block errors in isolation treated in the
previous section. This implies that our approach is quite
robust.
For compressed frames one would remove all corners in

the image by using the method in Fig. 3 first, then remove
block errors in the decompressed image. Then one will
avoid that the DPCM decoder introduces new set of false
artifacts due to the slight mismatch between original and
temporally inpainted image.

4 Results and discussion
In this section we assess the performance and quality
of the suggested post processing methods described in
Section 3 and discuss the results.

We performed subjective tests for the temporal inpaint-
ning algorithm suggested in Section 3.2 as well as the
spatial inpainting algorithms for uncompressed frames in
Section 3.1.1. All algorithms are also evaluated objectively
through the SSIM metric.
We did not perform subjective tests on the spa-

tial inpainting algorithm for compressed frames in
Section 3.1.2 due to the difficulty of obtaining raw frames.
As explained in Section 3.1.2, we lack a good representa-
tive for original frame, and this will make the assessment
of inpainting methods for compressed frames unfair. For
this reason, we will make a more thorough assessment of
this method objectively in Section 4.2.

4.1 Subjective testing
The experiment was conducted at “Innlandet Hospi-
tal Trust Gjøvik” (SI Gjøvik) with five gastroenterolo-
gists. Two are affiliated with SI Gjøvik. The three oth-
ers were visiting from three other institutions in Nor-
way (St Olavs Hospital Trondheim, Colosseumklinikken
Medisinske Senter AS Oslo, and Telemark Hospital
Skien), and this reduces possible biases due to “tradition”
at a particular institution.

4.1.1 Description of experiment
Application and setup: the application was created
using MATLAB GUIDE [33]. Three images, original,
noisy, and inpainted, were displayed side by side hori-
zontally in random order for each screen shot or trial.
Thirty trials were done in total, with about 15 trials for
each inpainting method. Among these, about 1/3 was with
moderate noise, 1/3 with dense noise, and about 1/3 with
very dense noise. Examples on dense and very dense noise
are provided in Fig. 9.
The images were displayed on a Dell ultrasharp 24”

monitor (U2412M) with aspect ratio 16:10 and 24-bit
color resolution (approximately a sRGB gamut) over a
middle gray (i.e., RGB values of [119,119,119]) back-
ground. The experiment was conducted in a room at SI
Gjøvik with same type of lighting conditions as the room
used for assessment of colonoscopy images, that is D65
lighting. The monitor was therefore calibrated for D65
lighting.

Data set: the images were captured with Pill-
cam®COLON [13] from GivenImaging with resolution of
576 × 576 pixels. The images contain a black frame sur-
rounding the captured scene. The images were cropped to
a rectangular shape of 361× 361, effectively removing the
surrounding frame. Thirty images taken from different
parts of the colon was chosen, some normal and others
with infected tissue. This is to illustrate a set of different
images that would need to be restored in a realistic
scenario. Examples are given in Fig. 9 (see also Fig. 7).
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Fig. 8 Simultaneous correction of single pixel errors and error blocks. a Original image 1. b Original image 2. c Noisy image 1, SSIM = 0.005. d Noisy
image 2, SSIM = 0.02 e Corrected image 1, SSIM = 0.91 f Corrected image 2, SSIM = 0.89

Assessment: Each candidate was asked to make the fol-
lowing assessments:
1) Image quality: the candidate was asked to categorize

the images from A to D with, A being the highest quality,
D being the lowest quality, corresponding to 4 to 1 points
on a linear scale. Several images could be given the same
score.
2) Usefulness: the candidate was asked to evaluate

whether an image is useful for inspection or not. That is,
whether the image is good enough to decide whether tis-
sue is abnormal or not. As the original always appeared as

one of the images, the candidate could determine if some-
thing artificial that could tamper the clinical evaluation
was introduced into one of the images. The decision for
usefulness was "yes" if (i) the image was clear enough to
decide whether or not something was wrong, (ii) no signif-
icantly disturbing artificial artifacts was introduced into
the image, and (iii) no important features were removed
from the image. Otherwise, the candidate should click
"no." There was a third option "irrelevant," which should
be chosen if the given image had no clinical value in and
off itself. This is to avoid setting a negative score on the
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Fig. 9 Selection of noisy images and their inpainted version used during the subjective experiments. a Error blocks. b Dense noise. c Very dense
noise. d Temporal inpainting with homographyH and Poisson editing. e Inpainting with 5 × 5 MF. f Inpainting with 6 × 6 MF

inpainting algorithm when it is really the original image
that is useless for clinical evaluation.

Information on candidates: The five gastroenterologist
had somewhat different background and applied different
parts of the scale for image quality score:
- Candidate 1: Gastroenterologist with long experience.
Used scale B–D (3–1 points) consequently.
- Candidate 2: Gastroenterologist with long experience.
Used scale A–C (4–2 points) consequently.
- Candidate 3: Young gastroenterologist with little expe-
rience. Used the whole scale A–D (4–1 points) conse-
quently.
- Candidate 4: Gastroenterologist with long experience.
Used scale B–D (3–1 points) consequently.
- Candidate 5: Gastroenterologist with long experience,

Table 1 Quality assessment

�OI �ON ZO ZN ZI

Cand. 1 0.26 1.63 0.235 -0.501 0.266

Cand. 2 0.13 1.70 0.204 -0.510 0.306

Cand. 3 0.33 2.47 0.242 -0.500 0.258

Cand. 4 0.06 1.50 0.151 -0.530 0.379

Cand. 5 0.20 2.00 0.187 -0.517 0.330

All 0.20 1.86 0.219 -0.508 0.289

�OI and �ON denotes average difference in score between original and inpainted
image and original and noisy image respectively. The last three columns contain
average Z-score for original, noisy and inpainted image

and with specialization in assessment of pillcam images.
Used scale B–D (points 3–1) consequently.

4.1.2 Results
Table 1 summarizes the image quality assessment for
each candidate as well as the average over all candidates.
Scores are in terms of averageMean Opinion Score (MOS)
and average standard Z score. The MOS is computed as
the (arithmetic) mean of all ratings corresponding to the
grades A–D (that is, rating 4–1 on a linear scale). We con-
sider a 95% confidence interval computed in the standard
way assuming that the variation in the mean is normally
distributed [34]. The individual standard deviations are
estimated from the data. Average Z score is computed
according to Montag’s method [35] assuming normal dis-
tribution and equal variance for all cases. Due to differing

Table 2 Usefulness assessment

Useful I/N: True yes % True no % Irrel. %

Cand. 1 100/33.3 0/60.7 10

Cand. 2 100/13.3 0/86.7 0

Cand. 3 92.3/3.84 7.7/96.2 13.3

Cand. 4 100/17.3 0/82.7 3.33

Cand. 5 86.7/0 13.3/100 0

All 95.8/13.4 4.2/86.6 5.33

Inpainted/noisy (I/N) percentages are shown. “True” means that irrelevant images
(percentage is shown in the last column) are taken out during percentage
computation
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use of the scale among candidates, we have listed the
difference in MOS. That is, �OI denotes the difference
in average MOS between original and inpainted image,
whereas �ON denotes the difference between average
MOS for original and noisy images.
Table 2 summarizes the usefulness assessment. Scores

in percent is shown for inpainted/noisy in the first two
columns. The percentage values have been computed by
removing irrelevant images from the total (thereby the
name “true”). The percentage of irrelevant images is listed
in the last column.
Figures 10 and 11 show the statistics for MOS as well as

histograms for usefulness test (with no compensation for
irrelevant images) for the strictest candidate (candidate 3)
as well as the total result including all candidates.

Notes on the results: the strictest evaluation overall was
done by candidate 3 (the candidate with least experience),
whereas candidate 5 (with background in pillcam image
assessment) had the strictest judgement on usefulness.
In total, 4 out of 30 inpainted images was deemed use-

less by candidate 5, three of which was very dense noise
corrected with 5×5 or 6×6 median filter (MF). The last
one was a temporally inpainted image and was discarded
due to color changes in certain areas (however, such errors
could easily be eliminated by another inpainting in one of
the chromaticity channels).
All in all, the inpainted images have a good score being

only 0.1 to 0.3 points away from the original on aver-
age. This compared to the noisy images which has a score
of about 2 points lower than the original on average.
It is more surprising that most of the inpainted images
were rated as useful for inspection, implying that they

can actually function as a substitute for the original image
whenever noise has corrupted it heavily.

Notes on assessments: candidates 1, 2, 4, and 5 went
through the test quite fast, gazing relatively quickly at
each image. Candidate 5, with long experience in pillcam
image assessment, was generally more critical to any sort
of noise artifact. In fact, this candidate consequently gave
the highest score to the original image. Candidate 3, with
less experience than the other candidates, studied each
image more carefully in order to categorize each image
differently. This was a valuable contribution w.r.t. quality
in that each image was studied more thoroughly before
a decision was made. It is interesting to note that candi-
dates 3 and 5 rated the inpainted images with very similar
score as the other candidates (taking the differing use of
the scale A-D into account), indicating a consistency for
the chosen inpainting methods. It is also interesting that
candidates 1, 2, and 4, which have mainly evaluated high
quality colonoscopy images, judged the usefulness of the
inpainted images as being the same as the original ones.

Comment on number of candidates: ideally, a large
number of candidates should have performed the subjec-
tive test. However, it is difficult to gather enough gastroen-
terologists over a limited time period due to availability of
such qualified personnel. Since the experiment showed a
clear consistency after the five candidates, we were able to
get hold of, we chose to conclude the experiment.

4.2 Objective tests through SSIMmetric
We evaluate all suggested methods here. However, we
treat the method in Section 3.1.2 more thoroughly since

Fig. 10 Results from subjective test for candidate 3. aMOS score (4 refers to highest quality). b Histogram showing usefulness of images



Floor et al. EURASIP Journal on Image and Video Processing         (2020) 2020:14 Page 12 of 15

Fig. 11 Results from subjective test for all candidates. aMOS score (4 refers to highest quality). b Histogram showing usefulness of images

subjective tests were not performed for this case. The
other two methods are treated mostly to show correspon-
dence between subjective and objective assessments.
The average SSIM scores with corresponding standard

deviation are provided for all inpainting methods along
with the corresponding noisy images in Table 3. The fol-
lowing abbreviations are used in the table: “high density
single pixel errors” (HSPE), “error blocks” (EB), “corner
detection” (CD), “homographywith Poisson editing” (HP),
and total variation (TV).

4.2.1 Temporal inpainting and spatial inpainting for
uncompressed frames

To compute the values in Table 3 for uncompressed
frames we use the same set of images as in the subjective
experiment in Section 4.1.
Consider median filter (MF) and high density single

pixel errors (HSPE): an average SSIM of 0.9510 was
obtained for MF-inpainted images with a standard devia-
tion of 0.0481, whereas the noisy images with HSPE had a
SSIM of 0.1362 on average with standard deviation 0.1165.
This is about what one would expect given the results of
the subjective test in Section 4.1
Consider homography with Poisson editing (HP) and

error blocks (EB): an average SSIM of 0.9093 was obtained
with HP-inpainted images with a standard deviation of
0.0214, whereas the noisy images with EB had a SSIM
of 0.6636 on average with standard deviation 0.0718. The
SSIM for inpainted images is about what one can expect
from the results of the subjective test in Section 4.1. The
images with EB, on the other hand, seems to have a rather
high SSIM value. One likely reason is that the parts of the
image not affected by noise is exactly equal to the original.

The SSIM does not seem to account fully for the visual
disturbance caused by blocks of random pixels (as seen in
Fig. 9a), which was one of the reasons why the subjective
test resulted in a low score for images with EB.

4.2.2 Spatial inpainting for compressed frames
From the SSIM values in Table 3, one can see that an
average SSIM of 0.8538 is obtained for the suggested
inpainting method: Total variation inpainting followed by
corner detection (TV + CD). This compared to 0.8257
for direct CD from [11] and 0.7828 for noisy images.
From these numbers, it appears that only small gains are
obtained through both inpainting methods, and that the
difference between the suggested inpainting method (TV
+ CD) and direct CD is quite insignificant. This does not
correspond well with reality when inspecting the result-
ing images. We provide some examples here, in order to

Table 3 Average SSIM scores with corresponding standard
deviation for all inpainting methods along with the
corresponding noisy frames

Average SSIM Std. dev.

Uncomp. HSPE 0.136 0.117

Uncomp. MF inp. 0.951 0.048

Uncomp. EB 0.664 0.072

Uncomp. HP. inp. 0.909 0.021

Compr. HSPE 0.783 0.042

Compr. direct CD 0.826 0.055

Compr. TV + CD 0.854 0.053

Abbreviations are as follows: HSPE high-density single pixel errors,MF median filter,
EB error blocks, CD corner detection, HP homography with Poisson editing, TV total
variation, Uncompr uncompressed, Compr. compressed
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show that the SSIM does not capture subjective reality
very well in this case. Figure 12 shows three examples of
compressed image, noisy image, direct CD, and TV + CD.
Take for example image 12 (i) versus image 12(l). One
would expect the difference in SSIM between these two
images to be larger than 0.04.

The SSIM for the suggested inpainting algorithm
(TV+DC) may not be too far off. Its mainly the difference
in SSIM to the other images that seems unrealistic. A pos-
sible reason why the SSIM fails to capture distortions in
these images may be that many features in the image are
mostly present. However, the fact that the errors perceived

Fig. 12 Selection of compressed images used during SSIM calculation. a Compressed image 1. b Compressed image 2. c Compressed image 3. d
Noisy image 1, SSIM = 0.745. e Noisy image 2, SSIM = 0.794 f Noisy image 3, SSIM = 0.751. g CD image 1, SSIM = 0.796. h CD image 2, SSIM
= 0.827. i CD image 3, SSIM = 0.790. j TV + CD image 1, SSIM = 0.848. k TV + CD image 2, SSIM = 0.846. l TV + CD image 3, SSIM = 0.828
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by our eyes is very disturbing, is seemingly not taken into
account by the SSIM here.

5 Conclusion and summary
We have illustrated that post processing at the receiver
can successively conceal a high density of errors as well
as large missing parts in WCE images. This may be uti-
lized, together with channel coding, to provide a more
robust error correction protocol without any additional
processing in the pill itself.
Subjective tests show that inpainted images obtained

using techniques suggested for temporal inpainting as well
as spatial inpainting for uncompressed frames has good
quality, and more surprisingly, that they can be applied
for clinical assessment. The quality obtained by the sug-
gested techniques are also confirmed through objective
tests using the SSIM metric.
When it comes to spatial inpainting on compressed

frames, it is not yet possible to draw firm conclusions. The
reason is that it is difficult to get hold of raw frames from
pillcameras (the ones available are already compressed).
Therefore we lack a good representative for “original”, that
is, noise free compressed frame, when performing subjec-
tive tests. For this reason, only objective tests with SSIM
metric was performed. Although the suggested inpaint-
ing method clearly improve the image quality, as seen
through visual inspection, the SSIM does not seem to cap-
ture this properly. Although the method seems promising,
the results are still inconclusive.
There are cases that cannot be tackled by the proposed

methods, like lengthy outage periods and lack of correla-
tion within and among frames. To cope with longer outage
periods one may use techniques like optical flow to inter-
polate frames that have been destroyed. The accuracy will
again depend on the correlation with the nearest neigh-
boring frames. However, in future WCE prototypes, one
can expect that the framerate will increase, enhancing the
performance of the suggested approach. Also, by using
strong error correcting codes in combination with post
processing algorithms, it is less likely that both methods
break down simultaneously.
The method proposed in this paper has at this stage

only been implemented through simulation. It is likely
that other problems may arise in real clinical application.
In the future, we therefore seek to verify the suggested
algorithms in real scenarios through clinical trials.
Abbreviations
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