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Change blindness is a type of visual masking which affects our ability to notice changes introduced in visual
stimuli (e.g. change in the colour or position of an object). In this paper, we propose to use it as a means to
identify image attributes that are less important than others. We propose a model of visual awareness based on
low-level saliency detection and image inpainting, which identifies textured regions within images that are the
most prone to change blindness. Results from a user study demonstrate that our model can generate alternative
versions of natural scenes which, while noticeably different, have the same visual quality as the original. We

show an example of practical application in image compression.

1. Introduction

With the number of digital pictures taken every year running into
the trillions [1], it has become increasingly important to understand
how people perceive image contents in order to manipulate them more
efficiently. Indeed, our visual system filters out visual information in a
variety of ways and a wide range of image processing applications such
as compression, watermarking or cross-media reproduction rely on
identifying what we can and cannot see within images. For instance,
very high frequency components can be removed without disturbance
in typical viewing conditions due to limited contrast sensitivity, which
is useful for data reduction [2]. Other early vision' mechanisms such as
low-level texture masking [4], salience [5-7] or chromatic adaptation
[8] have also been used to predict subjective image quality assessments
and improve image processing techniques. On the other hand, higher
levels of perception and cognition (late vision) are also subject to a
number of flaws which can affect our perceptual experience and in-
terpretation of image quality [9,10]. While limits in our early vision
renders image attributes invisible, even if we know where they are, late
vision flaws pertain more to the perceived importance of these attri-
butes. In the case of images (as opposed to videos) the distinction be-
tween invisible and unimportant is crucial in that it involves time: if a
distortion cannot be detected rapidly, it can arguably be considered as
acceptable. In this study, we test this hypothesis in the particular case of
natural images containing large and complex textured regions. Unlike
prior work on exploiting perceptual failures for prediction of image
quality, we propose to identify the important information in images via
a relatively unknown high-level mechanism of the human visual system
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(HVS): visual awareness.

Fig. 2 depicts an example of the game “Spot the difference”. We
found that it takes most people at least 45 s to notice the missing engine
under the wing. This comes from a remarkable shortcoming of our vi-
sual system referred to as change blindness [12,13]. While the origins
and implications of this phenomenon are not yet fully understood, it is
known to come from a failure to accurately represent and compare
visual stimuli in memory [14]. Changes affecting the gist of the scene
are detected faster [15,16], yet the nature and context of the change
can make it very difficult to see, even in the most salient image regions
[17,18], as in Fig. 2. Change blindness therefore highlights a difference
between attention and awareness [19]. The presence of the engine in
Fig. 2 can then be seen as a piece of information that our visual system
considers not worth verifying in priority in the context of the game. In
other words, the HVS filters out the information that would otherwise
make us rapidly aware of the change. But once the latter is noticed, it
becomes clear which image is the original one and which one was
tempered with, as it seems unlikely that the plane would not have an
engine. Fig. 3 shows another example, where change is introduced in
complex textures. Again, given time, we can notice discrepancies that
are invisible at first. However, this time it is less obvious which image is
the original (that is of course, if one is not already familiar with the
scene) as they both convey the same meaning. Consequently, we argue
that the two images in Fig. 3 can be considered as perceptually
equivalent.

Images attributes of low-level (contrasts, edges, textures) and high-
level (characteristics of objects, people, context) types are encoded in
internal representations with different levels of details [20], again

1 Typically, early vision refers to the first steps of visual perception where basic features like motion, colour and binocular disparity are measured [3].
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AWARENESS-DRIVEN
SIMPLIFICATION

ORIGINAL

Fig. 1. Principle of awareness-driven image simplification: make observers
unaware that the background has been simplified by exploiting change blind-
ness. Notice that on the left image, there are two different kinds of green/brown
trees, whereas on the right, there is only one kind. As a result, the amount of
data needed to encode the latter image is smaller.

depending on their presumed importance in the context. If change
blindness occurs, it implies that some of these attributes were not en-
coded in short-term memory with a sufficient fidelity [13]. Exploiting
change blindness can however be a challenge. Removing the engine in
Fig. 2 seems difficult to do in an automatic fashion, but most im-
portantly it has limited advantages when it comes for example to
compressing the image. Other types of image attributes such as complex
textures can be tempered with more easily and with greater benefits.
Research on texture perception [21] and texture synthesis [22] have
shown that perceptual characteristics of textures can be captured by
means of only a few statistical attributes. Two different textured regions
may then be perceived as similar if they match in terms of these attri-
butes [23]. In a previous work [24], we proposed to use exemplar-based
inpainting (also referred to as image completion or image filling) to sim-
plify background textures in natural images and therefore gain in
compression ratio. We demonstrated in particular that the simplified
image can be considered as equivalent to the original, as long as the
former is free of artifacts and semantic inconsistencies. Fig. 1 illustrates
the principle of exploiting change blindness to reduce the complexity of
a scene’s background.

Note that there is already a vast body of literature on texture
masking (see e.g. [4]), yet they concern mostly the early vision aspects
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of texture perception. What makes our work novel is our position that it
does not necessarily matter whether the original and reproduced
images are noticeably different as long as it takes a while to notice the
difference and that, once noticed, identifying the original one is not
straightforward (as in Fig. 3). We build upon previous work [24], and
propose a prototypical visual awareness model to exploit spatial re-
dundancies in textured images based on saliency detection and pre-
dictability of image regions. We first discuss related work and con-
tributions before presenting the model as well as our experimental
results.

2. Related work
2.1. Exploiting, inducing and measuring change blindness

So far, change blindness has mostly been studied in the field of vi-
sion and cognitive sciences [14,13,20,25] as it received limited interest
from in the image processing community [11], mostly because too little
is known as to its causes thus making it a difficult phenomenon to
predict/induce with in an automatic fashion. One of the very first at-
tempts at exploiting change blindness was by Cater et al. [26] in the
field of computer graphics. The authors suggested to lower the ren-
dering quality of objects of lesser saliency in a scene during a visual
disruption such as a blink. They conducted an experiment with 10
rendered scenes and modified the rendering quality at different loca-
tions, classified as of central or marginal interest. Central interest
changes were detected rapidly while marginal interest changes required
observers an average of 40s to be discovered. They concluded that
change blindness can indeed be exploited in order to reduce the com-
putational effort required for rendering.

When it comes to measuring the degree of change blindness be-
tween two images, Hou et al. [27] proposed to use the Hamming dis-
tance between two images’ signatures (the signature of a greyscale
image is the sign of its DCT coefficients) as a measure of the time
needed by a person to actually perceive a change between the two
images. Based on results obtained from an experiment involving 60
image pairs manually modified to induce change blindness and nine
naive observers, they obtained an average correlation of 0.563 when
the signatures were computed in the CIELAB colour-space. In addition
to being only intended for large changes that significantly affect the
frequency content of the image, the signature-based model is mostly ad
hoc and lacks biological plausibility. More recently, Ma et al. [18]
proposed a measure based on a so-called context-aware saliency detec-
tion and obtained a correlation between predicted degree of blindness
and recognition time of 0.75 based on results obtained on 100 image
pairs and 30 subjects. The changes in image pairs were generated

Fig. 2. Example of image pair inducing change blindness [11].
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Fig. 3. Other example of image pair inducing change blindness.

automatically with a method that utilises a variety of operators such as
insertion, deletion, replacement, and scaling. They used alpha matting
for segmentation and PatchMatch inpainting [28] for filling when
needed. However, Ma et al.’s model is also intended for large changes
that affect objects. In this paper, we aim to induce more subtle changes
which, while visible, do not significantly alter our interpretation of the
scene.

2.2. Exploiting spatial redundancies in images

Several studies have suggested to exploit spatial redundancy to
compress images and videos by removing macro-blocks on the en-
coder’s side while making sure that they can be recovered on the de-
coder’s side via inpainting-like methods [29-31]. The motivation be-
hind these approaches is however to recover exactly the original signal,
while we suggest that some discrepancies can be introduced without
disturbance.

2.3. Modeling visual memory

Studies on the role of memory in the perception of visual stimuli
have shown that humans have the ability to remember a massive
quantity of visual information from natural scenes [32,33]. However,
not all visual information is equally remembered. In an attempt to
understand what makes that some visual information will be more
likely to be memorised than other, several recent studies have focused
on finding the right combination of image attributes that can predict
how memorable an image is [34] or an object in an image [35]. The
results highlight in particular the importance of semantics (labels, an-
notations). For instance, an image containing a person or a car is more
likely to be remembered than one containing a building or a tree. While
these methods are primarily intended to model long-term visual
memory and how internal representations fade over time, our approach
is substantially different as we focus mostly on the limitations of short-
term memory through the study of awareness and change blindness.

3. Contributions

As reported in [11], change blindness and other types of high-level
visual masking have received limited attention from the image, video,
and computer graphics research communities. Here, we test the hy-
pothesis that change blindness can be used to identify unimportant
image attributes. We build upon previous work [24], and propose a
prototypical visual awareness model based on low-level feature ex-
traction, which can be used to exploit spatial redundancies in textured
images. As mentioned previously, what makes our work novel is our
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position that it does not necessarily matter whether the original and
reproduced images are noticeably different as long as it takes a while to
notice the difference and that, once noticed, identifying the original one
is not straightforward.

4. Finding textured regions that can induce change blindness
4.1. Texture representation

As most natural textures can be well modeled by blocks (also re-
ferred to as patches, i.e. small neighbourhoods pixels, typically square-
shaped) [36], we propose to consider the hypothesis that there is a
block-based representation of textures in internal representations. This
hypothesis can be supported by two demonstrated facts: (1) our vision
is only detailed on a small portion of our visual field, corresponding to
the size of a thumbnail seen at arm’s length, which corresponds to a
large block in the displayed image [23,11] and (2) the primary visual
cortex contains localised receptive fields that can be modeled by blocks
[371.

4.2. Encoding fidelity map

For a digital image I divided in a set of non-overlapping square
blocks of size n, we propose a model to estimate, for each block b, the
overall fidelity with which it will be stored in visual short-term memory
noted .# (b). The resulting map of all blocks in I, noted is what we refer
to as an encoding fidelity map. In this study, the notion of image back-
ground is particularly important. The proposed framework is indeed
mostly intended for scenes that contain a (group of) prominent object(s)
that constitute their foreground (e.g. the pen in Fig. 3). For an image I,
we note its fore- and background Ir and Iy, respectively. Incidentally,
we assume that every block in Ir has a maximal encoding fidelity, i.e.
Z#(b) =1,V b € Ir (where 1 is the top of the fidelity scale). To extract
Ir and Iy, we used saliency detection and mean shift segmentation, as in
[38]. This allows us in particular to reduce the computational com-
plexity of the method by processing solely background blocks.

As previously mentioned, our model identifies those specific blocks
which have both a low saliency (i.e. part of the background) and which
are somehow easy for the brain to “guess” from the rest of I. Given
.7 (1), a saliency map derived from I, we obtain .7(b) as the average
saliency of all pixels in b. Note that the extent to which a block can be
easily guessed is what we previously referred to as its inpaintability”
[24]. As highlighted in previous studies [39], predicting the quality of

2 We define the inpaintability of a set of pixels as the probability that it can be replaced
in a visually appealing manner, with a given inpainting method.
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Fig. 4. From left to right: original image (a), saliency map according to [42] (high energy = high saliency) (b), encoding fidelity map without (c) and with (d)
saliency weighting (high energy = high encoding fidelity). The encoding fidelity of every block in the scene’s foreground (the yellow flower), which is extracted in

the first steps of the map computation, is maximal.

inpainting requires to account for local context. Furthermore, it has to
do so in a way that is consistent with the inpainting algorithm to be
used. Let us note b, the surrounds of b (we consider all eight 8-con-
nected blocks of size n) and let IT,, be a dictionary (set) of blocks re-
presenting {b}, € Ilb’ ¢ Ig}, the set of surrounds of all blocks not be-
longing to Ir. Note that, for convenience sake, Ily, is here represented
as a matrix with pixel blocks (reshaped as row vectors) in rows. Finally,
let w, be the vector of optimal weights for the linear decomposition of
b, in II},,, in the sense of a measure of similarity 7 (by,b,), so that:
w, = arg minZ (b, Iy, w)
@ (€Y
The encoding fidelity of block b is then computed as the maximum
accuracy with which it can be estimated from the dictionary, weighted
by its saliency:

7 (b) = Z(b,IIyw,).” (b) (2)

where II4, is a dictionary of blocks corresponding to ITy,, but from the
set {b’ € I\If} (i.e. without the surrounds). Fig. 4 shows an example of
resulting map.

Many different methods have been proposed to create a dictionary
of patches or blocks of pixels for image denoising, restoration or in-
painting [40]. Any of them can potentially be used in our model. In this
study however, and for the sake of simplicity we chose to use Principal
Component Analysis (PCA) to build II}, and ITy,, . The first 50 principal
components were kept in both cases. To represent colour, we use the
hue-linearised LAB2000HL colour space [41], which exhibits more
perceptual uniformity than CIELAB overall.

4.3. Saliency detection

There is a vast literature on saliency detection for visual attention
modeling [6]. Although visual attention is known to be a relatively
more complex process that involves also top-down mechanism such as
culture or personal preference, bottom-up saliency models have been
reported to give very accurate prediction of human fixations in some
cases. We tested several models [42,43,38,44] and found that the
seminal Itti model [42] with basic features (colour opposition, lumi-
nance and orientations) gives satisfying results on our experimental
benchmark.

4.4. Block similarity measure

As a measure of block similarity Z (by,b,), it is common to use the
sum of squared differences [45]. Bugeau et al. [46] observed however
that the SSD, when used alone, tends to favor uniform blocks, therefore
we propose to use it in combination with a contrast and a structure
similarity terms derived from the well-known SSIM index [47] such as:

SSD (by,b2)

Z((b1,by) = ———
®rba) = )5 (br.b)

3)

where c(by,b,) and s(by,b,) are respectively the contrast and structural
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similarity terms.

5. Modifying the least significant image regions

Having identified blocks of lower significance, we can alter them in
a way that induces change blindness. Let us consider a threshold 7 of
internal encoding fidelity, so that the set A, = {b € Il.# (b) < 7} re-
presents the least significant blocks in I. We can then discard A, and
recover it via inpainting. We implemented a simple method based on
the seminal work by Criminisi et al. [48]. The image with missing re-
gions is first divided into blocks of size n, as in the encoding fidelity
map. Every block b is then examined together with its eight neighbours
(the surround b,), thus creating what we will refer to as a super-block
B = {b U b,}. If b, the center of B is missing, the super-block is put in a
dictionary of incomplete blocks IL. In the alternative case, the super-
block is put in a dictionary of complete blocks II.. For each incomplete
element in IL, the partial data is used for context matching with IT. and
missing data is copied from the best matching complete super-block. In
the inpainting procedure, priority is given to the most complete super-
blocks. To give a sense of continuity between the known and filled
regions, we quilted blocks by means of graphcut [49] and Poisson
blending [50].

The higher the threshold 7, the lower the chance to recover exactly
A., as more blocks need to be recovered from less reference data.
However, as long as there are no artifacts or semantic inconsistencies,
we argue that the result is acceptable. Unfortunately, traditional image-
difference metrics® do not predict well such inconsistencies [24],
therefore we still have to rely on a manual selection of 7. However, our
results demonstrate that, for a certain type of images, a threshold of
10% permits to render images with a similar quality or higher to that of
the original, according to a majority of people.

6. Experiments
6.1. Viewing conditions

We used an Eizo colourEdge CG246W display (24.1” — 61 cm), ca-
librated with an EyeOne software for a colour temperature of 6500 K, a
gamma of 2.2 and a luminous intensity of 80 cd/m?. The experiment
was carried out in a dark room. A viewing distance of approximately
50 cm was ensured for all observers.

6.2. Observers

A group of 30 colour-normal observers participated in the experi-
ment. Ages ranged from 22 to 52 years old, 20 of them were male and
15 of them had background in image processing or vision research.
Note that we found no significant correlation between the output of the

3 Note that the term metric is here not used according to its proper mathematical de-
finition. It is however quite established in the image quality community.
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Fig. 5. Images used in our experiments, ranked from the one yielding the best (top left) to the worst (bottom right) quality of simplification at ¢ = 15% according to
our users panel. These images were selected from two publicly available databases [51,52], except the last one, which was rendered specifically for this study.

experiment and either of these criteria (age, gender and familiarity with
the task).

6.3. Stimuli and methodology

In order to assess the extent to which the proposed model can in-
duce change blindness, we used 30 colour images of natural scenes
consisting of a complex textured background with a spatially compact
foreground (see Fig. 5). These images were selected from two publicly
available databases [51,52], except one which was computationally
rendered specifically for this study in order to show that the proposed
method also works with non-natural images. For each scene, three
modified versions of the original image were rendered for v = 5%,
7= 10% and 7 = 15%. Initially, the image pairs (original, rendering at
T = 5%) were displayed in random order and position (left/right) and
observers were asked to answer the question: Which image has the
highest quality?, with the possibility of tie scores. Participants were
given no indication as to the meaning of the term quality, it was left
entirely up to them to interpret it. We expected people to occasionally
see some differences between the stimuli after a while, when the
blindness would stop. Therefore, we could not ask them to rate the
fidelity or difference for instance. As long as they were not able to tell
which was the original which was simplified, the framework was suc-
cessful. In case a participant could see inpainting artifacts, the original
image was most likely considered by them as reference and the other,
distorted. These are the reasons why we chose to use the word quality.

Furthermore, for each scene and at each level, a pair consisting of
twice the original image (i.e. T = 0%) was also introduced at a random
position in the experiment. The purpose of these red herrings was to test
our initial intuition that, in the absence of difference between the sti-
muli, observers could somehow convince themselves that they saw a
difference, partly due to the same short-term visual memory flaws that
induce change blindness. Tie scores were also allowed in these cases.
We then also counted the number of occurrences of each possible
outcome across all observers and image pairs: count, for each time one
of the two identical images was found of higher quality than the other
and counts for when a tie score was given.

Note that we constrained the sequence order to show scenes in order
of increasing levels of simplification (i.e. T = 5% then 10% and finally
15%), in order to avoid the perception of artifacts at the highest level
influencing judgment at lower levels. A screening according to [53]
revealed that all observers were valid, which implies that there was
some consistency between their judgments.

Unlike in our preliminary work [24], we focus on demonstrating
that observers find no difference in terms of quality between original
and simplified images. This approach allows us to demonstrate that,
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even if observers can see a discrepancy between the two stimuli, the
simplified one can be perceived as of equivalent image quality to the
original.

6.4. Results

Table 1 gives the results obtained for all 30 images and 30 ob-
servers. In order to demonstrate the efficiency of our method, we
compared the probability of an observer finding the original image to
be of higher quality to that of the same observer finding the simplified
image to be of equivalent or higher quality than the original one. First,
as a model of standard observer, we simply looked at each image pair
and computed the mode of the decision taken by all observers (i.e. the
majority). The two probabilities can then be estimated from our ex-
perimental data by the ratios of the number of occurrences of each case
(i and i) over the total number of comparisons m = 120 (4 values of 7 -
0%, 5%, 10% and 15% - x 30 scenes X one standard observer), i.e.:
p, ® Py = ii/m and p, = p, = i,/m, respectively.

To determine whether these estimated probabilities were sig-
nificantly different from each other, we assumed that observers’ ability
to find the original in each of the image pairs follows a binomial dis-
tribution and used Yule’s two-sample binomial test [54] at 95% con-
fidence.

The test revealed that, when 7 = 5% and 7 = 10%, observers did not
find that the original image was of higher quality. However, when
T = 15%, they did. Additionally, our results indicate that, when asked to

Table 1

Results from the subjective experiments in percentage of total number of image
pairs. O: original image, S: simplified image. Note that (1), (2) and (3) add up to
100% in each column. Values in bold are significantly larger than their coun-
terpart (e.g. (1) is the counterpart of (2) + (3)). These results show that (1) the
simplified images were considered at least as good as the original ones quality-
wise in a majority of the cases for 7 = 5% and T = 10% and (2) differences
between image pairs were occasionally hallucinated.

T = 0% (red T=5% 1=10% 71=15%
herring)

(1) O was preferred 27% 29% 45% 53%

(2) S was preferred 24% 26% 23% 21%

(3) No difference 49% 45% 32% 26%

(1) + (2): Difference was 51% / / /
hallucinated
(2) + (3): S was considered of / 71% 55% 47%
equal

or better quality than O
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Fig. 6. Example of good (first row) and bad (second row) results obtained at
T = 15%, according to the observers ratings. Note that, despite using a small
block size (n = 8) to describe the textures, the coarse background of the top
scene could still be simplified with excellent quality.

compare two identical images, the probability that observers found
differences in terms of quality between them is not significantly dif-
ferent from that of not seeing any difference. This is particularly in-
teresting as it challenges the mainstream approach to subjective quality
assessment. Though recent studies have stressed the importance of
considering the multiple strategies employed by our visual system when
assessing the resemblance of an image pair [55], our results reveal that
people can as well hallucinate the presence of image distortions.

Fig. 6 shows examples of best and worst results obtained, as eval-
uated by our panel of observers.

6.5. Time analysis

In terms of decision times, we measured relatively large inter-ob-
server variability. The whole experiment took between 6.3 and
58.4 min with an average at 23.4 min (i.e. respectively 3.13, 29.2 and
11.7 s per image pair). We also measured a large inter-scene variability
with an average standard deviation per observer of 5.2s at 7 = 15%
(and statistically similar values at 7 = 5% and 7 = 10%"). We believe
that this can be explained by the fact that the scenes differ greatly, not
only in terms of the textures they contain (colour, coarseness, or-
ientation, etc.) but also in terms of size, location compactness and
meaning of their foreground. Not only can each of these attributes af-
fect the performance of our method, they can also significantly affect
the time needed to perform the subjective task.

Fig. 7 depicts the image pairs that required the most and least time
to rate, on average. Note finally that we found no Pearson Correlation
Coefficient larger than 0.55 between decision types and decision times
(globally or per observer), meaning that these variables correlate
poorly.

7. Discussion

The results presented in the previous section demonstrate that we
can “simplify” complex natural textures by carving out up to 10% of
data without perceivable loss of quality, in certain types of scenes.

In broad terms, change blindness can be exploited with any scene
containing more information than one can store in visual short-term
memory. In our framework, information is defined as details within rich

“ Two mean values m; and m, with corresponding standard deviations o7 and o, are
considered to be significantly different if my + oy <mpy—0y (Gf my <my) or
my + 0y < m—oy (if my > my).
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Fig. 7. Image pairs that required the most (top) and least (bottom) time for a
decision, on average for 30 observers (original images are shown on the left).
The levels of simplifications are: 5% (top) and 15% (bottom). The average times
recorded are 16.7s (¢ = 11.7s) and 5.2s (0 = 3.45s).

textures and the quality of its results depends mostly on a trade-off
between three attributes of textured regions: richness, stationarity and
size. The richer the texture, the more unlikely people are to be aware of
all its details. Consider the simplest possible case of an image with all its
pixels of the exact same colour: there is then no information to be
missed, so no perceptual failure to exploit. On the other hand, the
texture needs to be sufficiently stationary so it can be synthesised from
a small number of representative patches. The larger the textured re-
gion, the larger the number of blocks to be potentially removed (and the
better the compression ratio). Our framework considers 8 X 8 pixel
blocks and 24 x 24 pixel super-blocks so it should be applied to scenes
with at least one textured region larger than a 24 X 24 pixel square.

The optimal value of 7 is determined by the richness, stationarity
and size of textured regions within the scene. For instance, when some
patterns seem to be duplicated at different locations with small varia-
tions (refer to Fig. 1 for an illustration). The larger, richer and more
stationary the textures are, the larger the optimal 7. If poor quality
results are obtained with T = 5% for a particular image, it is likely that
the framework is not suitable for it.

Of course, the proposed framework relies heavily on the perfor-
mance of the texture synthesis and saliency detection. Other inpainting
strategies may be more adapted for other kinds of scenes [45] and/or
may allow for higher degrees of simplification. We believe that this
constitutes the most relevant direction for future research to improve
this work. Similarly, the use of other saliency detection models (see [6])
may be advisable depending on the type of image under consideration.

In addition to providing insights into visual coding, these findings
can be used in block-based compression such as with JPEG or HEVC.
The fewer the blocks, the smaller the amount of data to encode and
consequently the better the compression ratio. We analysed empirically
how our framework can improve the performance of JPEG and HEVC
coding (with the Main Still Picture profile for the latter) on the
benchmark set from Fig. 5 as well as the Kodak Lossless True colour
Image Suite [56], with a block/coding tree unit size of 8 x 8 pixels. The
two coding schemes were implemented in Matlab and their respective
compression ratios were tuned manually so as to create high quality
reproductions (we measured an SSIM index value larger than 0.96 in
each case). The framework was then applied to each image in order to
reduce the number of blocks to encode, resulting in an improvement in
compression ratio. Our results, reported in Table 2, indicate a marginal
yet significant average improvement over both standard JPEG and
HEVCx.

Of course, the change blindness-inducing framework that we
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Table 2
Average improvements of compression ratios permitted by our framework on
two different datasets. The framework was applied to JPEG and HEVC (Main
Still Picture profile with coding tree units of size 8 x 8). Recall that, as per our
experimental results, the framework can produce high quality images for
7 < 10%.

7 (%)
5 10 15
Benchmark JPEG +3.7% +6.9% +10.6%
HEVC +3.3% +5.2% +9.0%
Kodak LTCIS JPEG +3.1% +6.2% +9.8%
HEVC +2.1% +4.7% +8.1%

propose can also be exploited for fragile watermarking and other se-
curity applications. Indeed our experimental results demonstrate that,
in a significant number of cases, people were not able to distinguish
between the original and reproduced images. Therefore, we can create
several unique versions of the same image that no one would even
perceive as different, at least not at first glance. Instead of removing as
many blocks as possible as for compression, we can select a unique
pattern/combination of blocks to be simplified, and this will basically
constitute the watermark. The whole point is that the location of these
blocks would always be unknown to the receiver, who would then find
it very challenging to fraudulently alter the watermark other than by
altering the entire file. This is of course applicable to videos as well.

Finally, we also showed that people can hallucinate® discrepancies
in terms of quality between two identical natural images. Though it is
not completely clear which perceptual/psychological mechanisms are
behind this remarkable phenomenon, we believe that it challenges the
mainstream approach to subjective image quality assessment (SIQA) in
that it reveals a type of subjective bias which has not yet been ac-
counted for in image quality models, especially when it comes to near-
threshold distortions [55].

8. Conclusions

We demonstrated how visual change blindness can affect subjective
tasks pertaining to image quality assessment and we proposed a
bottom-up model of visual awareness in order to predict it. Results from
a user study revealed that we can alter up to 10% of pixels within
certain types of images without perceivable loss of quality. We then
demonstrated that this is exploitable for image coding as it can improve
compression ratios for block-based approaches like JPEG and HEVC.
Our findings call for more investigations towards understanding change
blindness, visual awareness and how it affects what we see in natural
images or video sequences.
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