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A B S T R A C T

We propose a novel pathology-sensitive deep learning model (PS-DeVCEM) for frame-level anomaly detection
and multi-label classification of different colon diseases in video capsule endoscopy (VCE) data. Our proposed
model is capable of coping with the key challenge of colon apparent heterogeneity caused by several types
of diseases. Our model is driven by attention-based deep multiple instance learning and is trained end-to-end
on weakly labeled data using video labels instead of detailed frame-by-frame annotation. This makes it a
cost-effective approach for the analysis of large capsule video endoscopy repositories. Other advantages of our
proposed model include its capability to localize gastrointestinal anomalies in the temporal domain within the
video frames, and its generality, in the sense that abnormal frame detection is based on automatically derived
image features. The spatial and temporal features are obtained through ResNet50 and residual Long short-term
memory (residual LSTM) blocks, respectively. Additionally, the learned temporal attention module provides
the importance of each frame to the final label prediction. Moreover, we developed a self-supervision method
to maximize the distance between classes of pathologies. We demonstrate through qualitative and quantitative
experiments that our proposed weakly supervised learning model gives a superior precision and F1-score
reaching, 61.6% and 55.1%, as compared to three state-of-the-art video analysis methods respectively. We also
show our model’s ability to temporally localize frames with pathologies, without frame annotation information
during training. Furthermore, we collected and annotated the first and largest VCE dataset with only video
labels. The dataset contains 455 short video segments with 28,304 frames and 14 classes of colorectal diseases
and artifacts. Dataset and code supporting this publication will be made available on our home page.
. Introduction

There are several colorectal diseases and abnormalities that in-
erfere with the normal working of the colon. Colorectal diseases
nclude colorectal cancer, polyps, ulcerative colitis, diverticulitis etc.
creening and detection of colorectal diseases at an early stage could
mprove disease management and diagnosis. Colonoscopy is consid-
red a gold standard as a screening procedure for colorectal diseases.
owever, colonoscopy has some limitations including invasiveness,
iscomfort, and embarrassment for the patient and relatively high cost.
hese inconveniences may limit the utility of colonoscopy, especially

n screening strategies where acceptance of the test is of the utmost
mportance (Schoofs et al., 2006). VCE is an alternative to visualize
he colon. VCE was first introduced in 2006 as a wireless, minimally
nvasive technique for the imaging of the large bowel that does not
equire sedation or gas insufflation (Shi et al., 2015). A single VCE
rocedure produces approximately 50,000 images and takes 45–90 min
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to review. Therefore, a machine learning system can be used to com-
plement gastroenterologists for fast and accurate diagnosis (Li et al.,
2011).

The detection and classification of colorectal diseases is a very
challenging problem due to apparent colon heterogeneity. In fact, colon
data contains a high degree of apparent heterogeneity due to varying
levels of unpredictable responses caused by the nature of diseases.
Moreover, the morphological clues in local neighborhoods of colon
images are not consistent across different patients. This makes it diffi-
cult to develop an automated disease detection model based on image
analysis techniques. A number of image processing based methods have
addressed colorectal pathology detection problems in literature (Mo-
hammed et al., 2018b; Bernal et al., 2017; Tajbakhsh et al., 2015;
Ronneberger et al., 2015). These methods do not consider long-term
temporal dependencies between frames to improve the performance
of detection algorithms. Moreover, they rely on the assumption that
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pixel-level or frame-level annotation data is available and is trained in
a fully supervised manner. However, this assumption is very limiting in
a clinical setting as it is expert-intensive and time-consuming to obtain
a precise annotation of the pathologies per image. In addition, from
a clinical application perspective, a gastroenterologist is required to
check for various types of pathologies during a single examination and
computer-aided diagnostic techniques are expected to detect as many
diseases as possible to circumvent miss-diagnosis. However, the number
of pathologies that earlier methods handle is limited to classes of
diseases such as polyps (Bernal et al., 2017) and angiodysplasia (Shvets
et al., 2018). Moreover, the dataset used in training such models lacks
class variety to be used in clinical application.

To address these challenges, we propose PS-DeVCEM, a new weakly
supervised learning approach for learning frame-level multi-label classi-
fication from a given video label. Our model explores robust deep resid-
ual features that are invariant to apparent heterogeneity in colon data.
We also explore residual LSTM units to take into account the long term
photo-metric and appearance variability. Our approach is based on
an objective function that minimizes within-video similarities between
positive and negative feature frames, while at the same time learning
video-level prediction and contribution from each frame. The proposed
method requires only video labels which can easily be obtained from
VCE data reader software tags such as RAPID reader (GivenImaging) as
a normal working procedure. We formulate the aggregation of positive
and negative frame labels using the Bernoulli distribution. The network
is trained by optimizing the sum of log-likelihood and cross-entropy for
the video prediction. The final video prediction is computed by taking
the learned weighted mean of each frame feature embeddings. The
learned weights are given by a two-layered neural network that cor-
responds to the attention. High attention weights indicate key-frames
for the detected pathology class and low attention weights show non-
informative frames. We exploit the ordering of the attention weights
to minimize the similarities between high and low attention frames by
training a two-layered neural network which acts as a self-supervision
method. The flow diagram of our proposed PS-DeVCEM model is shown
in Fig. 1.

Moreover, we assume the video is permutation-variant and modeled
with residual bi-directional LSTM. Furthermore, we collect short VCE
video segments. The goals are two-fold; to provide a research and
development resource for VCE pathology detection, and to provide
a way to benchmark and compare different approaches. The dataset
contains a total of 28,304 video frames containing 14 classes of diseases
and artifacts (bubble and debris) from 40 patients.

The primary contributions of this paper are:

• A self-supervision method to minimize the similarity between
positive and negative frames within a video segment. This has an
advantage by forcing the attention network to be discriminative
between positive and negative instances.

• An end-to-end trainable network that takes video as an input and
detects key-frames with video-level prediction. The features from
each frame in the video are aggregated using learned weights
for final video prediction. In addition, we assume temporal de-
pendency between neighboring frames, which is modeled using
residual bidirectional long short-term memory blocks.

• A new VCE dataset suited for weakly supervised learning prob-
lems. The dataset contains 455 short video segments extracted
using RAPID reader software (GivenImaging). There are 28,304
frames with a total of 14 classes of diseases from 40 patients.

• Detailed comparison of existing weakly supervised learning algo-
rithms (Ray and Craven, 2005; Andrews et al., 2003; Zhou and
Xu, 2007; Bunescu and Mooney, 2007; Ilse et al., 2018; Paul
et al., 2018; Nguyen et al., 2018) on VCE dataset. We employ
a random 50–50 train/test split under the condition that at least

each pathology exists in the train/test set.
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• Qualitative and quantitative experiments on VCE dataset and
comparison with state-of-the-art works show that our proposed
method outperforms in-terms of precision and F1-score reaching
61.6% and 55.1% respectively.

We organize the rest of the paper as follows. Section 2 briefly
reviews previous works on video analysis and multiple instance learn-
ing (MIL). In Section 3 we present the PS-DeVCEM along with the
self-supervising method. In Section 4 we present the dataset and com-
parison of different MIL methods and benchmarks will be discussed.
In addition, we present experiments with a different configuration of
the proposed method. Finally, in Section 5 we conclude the paper with
future direction and discussion.

2. Related work

In general, there are two approaches in modeling video data con-
text: short and long context modeling. In these methods, the long
and short-range dependencies can be well memorized by sequentially
running the network over individual frames. However, designing an
architecture for video analysis is a challenging task as it involves
computationally expensive tasks such as temporal information fusion
strategy, frame feature representation (as compared to end-to-end train-
ing) and spatio-temporal feature fusion. The basic building blocks for
video analysis with deep learning includes spatial feature extraction
unit such as ResNet (He et al., 2016), VGG (Simonyan and Zisserman,
2014), etc. and temporal feature extraction unit such as optical flow
and LSTM (Graves, 2013) units. LSTM (Graves, 2013) is combined
with CNN for activity recognition in Long-term recurrent convolutional
networks for visual recognition and description (Donahue et al., 2015).
Other alternative approaches extract spatio-temporal features together
using 3D convolutions such as C3D (Tran et al., 2015). Spatio-temporal
features such as C3D are used in Sultani et al. (2018) for anomaly
detection in natural videos. Most of the current state of the art methods
use two-stream networks such as ActionVLAD (Girdhar et al., 2017) at
the expense of high computational complexity. This is usually done by
fusing extracted spatial and optical flow features independently.

In many endoscopic pathology detection problems, labels are rela-
tively scarce and expensive to obtain. One such case is in VCE, where
annotating pathologies frame by frame is arduous and time consuming
for medical doctors. Therefore, weakly supervised approaches such as
MIL (Maron and Lozano-Pérez, 1998; Møllersen et al., 2018) or fully
unsupervised methods of detection and segmentation are required to
address the above issue. MIL is a type of weakly supervised learning
problem where only group-level, also known as bag level annotation,
is available. The instances within the bag are not labeled. For example,
the annotation could be a general statement about the category of
the pathology in the video without information about the location
within the video or frame labels. In the MIL problem formulation (Ilse
et al., 2018), it is assumed that positive bag videos contain at least one
instance of a given pathology while a negative bag video depicts none.

MIL algorithms can be divided into two categories, depending on if
the data is an independent samples (images) or temporal based (video).
Independent samples (images): Assumes the data within a positive
or negative bag is an independent sample. The simplest approach to
MIL is single-instance learning (SIL) (Ray and Craven, 2005) which
assigns each instance the label of its bag, creating a supervised learning
problem, but mislabeling negative instances in positive bags (Doran and
Ray, 2014). In Andrews et al. (2003), the standard support vector ma-
chine (SVM) formulation (Suykens and Vandewalle, 1999) is modified
so that the constraints on instance labels correspond to the fact that at
least one instance in each bag is positive (Doran and Ray, 2014). Simi-
larly, in Bunescu and Mooney (2007), SVM formulation is modified as-
suming there are very few positive instances of the positive bags. Other
unsupervised methods to MIL include MissSVM (Zhou and Xu, 2007).

More recently, Ilse et al. (2018) proposed a permutation-invariant
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Fig. 1. PS-DeVCEM: The frame features are extracted with ResNet50 network (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009). The feature embedding is computed
y passing through a residual LSTM block. Finally, the embeddings are aggregated with learned weights. The output of the network is video-level class probabilities for each
athology. For details please refer to Section 3.
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ggregation operator that corresponds to the attention method. Com-
ared to soft attention method as in Xu et al. (2015), the aggregation
perator is different in that the former is calculated as a dot product
hile the latter is computed using a two-layered neural network.
oreover, the aggregation operator outperforms commonly used MIL

ooling operators (Ilse et al., 2018). In comparison to other works in
ndoscopy, Wang et al. (2016) addresses endoscopic images with MIL
ormulation. Wang et al. (2016) proposed using endoscopic images with
eak labels mined from the diagnostic text. If the diagnostic text does
ot match any of predefined of key words such as Gastric Cancer,
sophageal Cancer, and Esophagitis, the corresponding label of the
ndoscopic image folder is annotated as negative; otherwise, the label
f the endoscopic image folder is annotated as positive. Each frame is
onsidered as independent.
emporal based (video) MIL: Kotzias et al. (2015), proposed using

group-level labels to learn instance-level classification models. The
group-level prediction is given by taking the average of the instances.
An objective function is introduced to encourage smoothness of inferred
instance-level labels based on instance-level similarity, while at the
same time respecting group-level label constraints. Unlike Kotzias et al.
(2015), MI-Net (Wang et al., 2018) does not rely on inferring instance-
level probabilities. Both of the above approaches are based on neural
networks, but Mi-Net is an embedded space aggregation method that
uses the MIL pooling layer to focus on learning bag representation.
MIL pooling (Pinheiro and Collobert, 2015) layer is used to aggregate
instance features into one bag representation. Finally, a fully connected
(FCN) layer with sigmoid is used to predict the bag labels. In Paul et al.
(2018), spatial and temporal features are extracted using a two-stream
network (RGB streams and optical flow) and co-activity similarity
loss is proposed to maximize the distance between multiple activities.
In Nguyen et al. (2018) they consider the problem of untrimmed
videos by extracting segment features and sparsity loss on the attention
weights for aggregating the segment features.

In general, image-based MIL approaches do not provide temporal
localization for the detected pathology and are not suitable for VCE
video analysis. In VCE or medical imaging applications in general,
experts are interested to know frame-level pathology prediction of
the detection algorithm. Compared to Wang et al. (2016) endoscopic

images are very different from VCE images. VCE images do not have
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as good image quality as the traditional endoscopy because of high
compression and low image resolution due to volume and power limi-
tation. Bad imaging conditions such as low illumination, uncontrolled
capsule motion, and peristalsis, will further reduce the qualities of VCE
images. Among the temporal and independent sample MIL formulation,
none of the above methods exploit the positive and negative segments
within a single bag to maximize the distance between the classes. In
the proposed method, we show that by using within bag similarity as
self-supervision, we can boost the performance of frame localization
and VCE video classification.

3. Pathology-sensitive deep learning model

Our aim is to design a weakly supervised model for the purpose
of multi-label pathology detection. The model consists of fundamental
CNN pipelines, attention, residual LSTM, and self-supervision submod-
ule, as Fig. 1 shows. The advantage of our attention mechanisms is
that it can identify suspected frames and provides a robust video
feature representation, while likewise suppressing the irrelevant and
non-informative video frames from other classes. Hence, it is very
applicable to weakly supervise learning. The residual LSTM submodule
is able to focus on temporal features among a long sequence of video
frames, and while filter out irrelevant features for representation. Be-
sides, we propose a novel self-supervision mechanism which is used for
robust frame localization, because of the apparent colon heterogeneity
of the weakly labeled video is quite difficult to distinguish.

We begin by formally defining MIL, and establishing the notation
that will be used in the rest of this paper. Let 𝑉 = {𝑓1, 𝑓2, 𝑓3,… , 𝑓𝑁}
e a video containing frames 𝑓1, 𝑓2, 𝑓3,… , 𝑓𝑁 and 𝑁 is the number

of frames in the video. We assume individual labels are available
for each video 𝑉 and is given by 𝐺 with unknown frame label 𝒚 =
{𝑦1, 𝑦2, 𝑦3,… , 𝑦𝑁}. Earlier works in MIL assume binary classification

here 𝑦𝑛 ∈ {0, 1} (Ilse et al., 2018; Wang et al., 2018). But here
e assume a general multi-label classification problem where 𝑦𝑛 can
ssume a set of all possible classes 𝑘, 𝑃 = {𝑝1, 𝑝2, 𝑝3,… , 𝑝𝑘} in a multi-
abel learning problem. 𝑃𝑘 is defined as 𝑘th abnormality in the dataset
nd a given video could be labeled to contain multiple abnormalities
uch as 𝑃 = {}}𝑝𝑜𝑙𝑦𝑝′′, }}𝑏𝑙𝑒𝑒𝑑𝑖𝑛𝑔′′, }}𝑒𝑟𝑟𝑜𝑠𝑖𝑜𝑛′′}. Hence the ground
truth dataset has the form  = {(𝑽 𝟏, 𝑌1),… , (𝑽 𝒏, 𝑌𝑛)} where 𝑽 𝒊 ∈ 
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and 𝑌𝑖 ⊆ 𝑃 . Using the above notation, the MIL constraints could be
represented as:

𝑌 =

{

𝒑 if ∃𝑛 𝑠.𝑡. 𝑦𝑛 = 𝒑,𝒑 ⊆ 𝑃 , 𝑛 ∈ 𝑁
0, otherwise

(1)

where 𝑌 is the predicted video label. Alternative MIL constraint formu-
lation can be given as the maximum class probability over the frames
as:

𝑌 = max
𝑛

{𝑦𝑛} ∣ 𝑦𝑛 = 𝒑,𝒑 ⊆ 𝑃 , 𝑛 ∈ 𝑁 (2)

It is important to note that the frame-level labels, 𝑦𝑛 are not avail-
able during the training phase and only the video label 𝐺 is provided.
Therefore, our goal is to infer video label 𝑌 and frame label 𝑦𝑛 by
propagating information from video-level to frame-level with a neural
network. The motivation for using neural networks is that it is easier
to train in an end-to-end fashion. Moreover, previous works (Ilse et al.,
2018; Wang et al., 2018; Kotzias et al., 2015; Wu et al., 2015) have
shown that neural network-based MIL approach gives promising results
compared to classical approaches (Andrews et al., 2003; Ray and
Craven, 2005).

3.1. Residual LSTM

There are three different approaches to come up with a video-level
feature representation. These are instance aggregation approach (An-
drews et al., 2003), group aggregation approach (Cheplygina et al.,
2015) and embedded space aggregation approach (Ilse et al., 2018).
The approaches differ in whether they estimate frame-level probabili-
ties or aggregate the embeddings. Instance aggregation approach works
by combining instance-level predictions while group-level aggregation
approaches use group similarity for clustering positive and negative
samples. Embedded space aggregation approaches merge instant fea-
tures and learn group-level classifier (Wang et al., 2018). In VCE or
medical imaging applications in general, experts are interested to know
frame-level pathology prediction of detection algorithm more than
video label-level predictions. Hence, instance aggregation approaches
are suitable for a medical application. This is because frame-level
predictions are paramount as it gives interpretation and explanation
for the video prediction. Our approach is based on an aggregation
of embeddings with learned aggregation weight, i.e. attention, which
gives frame-level inference to the final video prediction. The framework
(illustrated in Fig. 1) consists of 𝑁 fully convolution encoder networks
which extract features 𝑥𝑖 = 𝛷𝜃(𝑓𝑖), for each frame. The encoder network
𝛷𝜃 is ResNet50 (He et al., 2016) that is pre-trained on ImageNet (Deng
et al., 2009). However, it is possible to use other networks such as
VGG (Simonyan and Zisserman, 2014), DenseNet (Huang et al., 2017)
or similar architectures. Temporal dependency between each frame is
modeled using residual LSTM blocks as shown in Fig. 2. The residual
LSTM blocks consist of bi-directional LSTMs composed of two LSTM
units that leverage the residual connection (Graves and Schmidhuber,
2005; Hochreiter and Schmidhuber, 1997). The main idea for using
residual connection is to make training easier and avoid performance
degradation in deeper networks (He et al., 2016). The biggest ad-
vantage of bi-directional LSTM networks lies in their capability of
preserving information over time by the recurrent method.

3.2. Temporal attention

Attention has been shown to improve performance of recurrent
neural networks in language translation (Vaswani et al., 2017) and
activity recognition (Sharma et al., 2015) tasks. Attention is mainly
used for easier modeling of long-term dependencies. However, the
application of attention to MIL is mainly to model MIL pooling and
has been limited (Ilse et al., 2018). Inspired by (Ilse et al. (2018),
the temporal attention is parameterized using a two layered neural
network. The attention block is shown in Fig. 3. However, as shown
4

in Fig. 1 the attention block is trained on residual temporal features
rather than frame feature 𝑥𝑖 as in Ilse et al. (2018) and Raffel and Ellis
(2015).

The MIL pooling operator aggregates activations of feature maps ℎ𝑖
of the residual block. Let 𝐻 = {ℎ1, ℎ2, ℎ3,… , ℎ𝑁} be frame representa-
tion of the residual block. Hence, the MIL pooling layer is given by Ilse
et al. (2018):

𝑍 =
𝑁
∑

𝑛=1
𝛼𝑛ℎ𝑛 (3)

where

𝛼𝑛 =
exp{𝒘𝑇 tanh(𝑽 𝒉𝑇𝑛 )}

∑𝑁
𝑖=1 exp{𝒘𝑇 tanh(𝑽 𝒉𝑇𝑖 )}

(4)

where 𝒘 ∈ R𝐿×1 and 𝑽 ∈ R𝐿×𝑀 are parameters of two-layered
neural network. Such formulation allows the gradient of cost function
to be back-propagated efficiently as ‘tanh’ supports both positive and
negative values. In this formulation, attention can be seen as producing
relative informativeness of the input feature by computing an adaptive
weighted average of the residual features.

3.3. Self-supervision

Several recent papers have explored the usage of the temporal
ordering of images (Wei et al., 2018; Basha et al., 2012). Using self-
supervised training, temporal ordering has been used for representation
learning (Wei et al., 2018). Inspired by temporal ordering, in this work
we propose attention ordering for faster convergence and MIL training
regularizer. Our aim is to model how frames with large and small value
of attention 𝛼𝑖 ∈ 𝜶 vary in embedding space ℎ𝑖 ∈ 𝑯 . Formally, our

ethod of self-supervision works by enforcing the fact that high valued
ttention 𝛼𝑖 aggregated embeddings ℎ𝑖 should be different from low-
alued attention 𝛼𝑖 aggregated embeddings. The self-supervision block
s shown in Fig. 4. Given frame attention, 𝜶, the video frames are
lustered into positive and negative bags based on the value of 𝜶 as
hown in Eq. (5) and (6).

+
𝑏𝑎𝑔 =

𝐵+=|𝜶> 1
𝑁 |

∑

𝑏=1
ℎ+𝑏 ∣ ℎ+𝑏 ⊆ 𝒉, 𝛼𝑏 >

1
𝑁

(5)

𝑍−
𝑏𝑎𝑔 =

𝐵−=|𝜶≤ 1
𝑁 |

∑

𝑏=1
ℎ−𝑏 ∣ ℎ−𝑏 ⊆ 𝒉, 𝛼𝑏 ≤

1
𝑁

(6)

where 𝐵+ and 𝐵− are the cardinalities of the set 𝜶 > 1
𝑁 and 𝜶 ≤ 1

𝑁
espectively.

Finally, positive and negative bag feature embeddings, 𝑍+
𝑏𝑎𝑔 , 𝑍

−
𝑏𝑎𝑔 ,

re used for training a two-layered neural network. The network is
rained with the ground truth value of ‘‘1’’ if the bags are the same and
‘0’’ otherwise. In other words, the proposed self-supervision acts as a
egularizer by maximizing the distance between positive and negative
ags in embedding space.

.4. Loss function

The inputs of our model consist of a sequence of video frames and
heir corresponding pathology label (ground truth). Considering we
ould like to learn both temporal attention and video-level predictions,
e formulated the loss function shown in Eq. (7). The purpose of the

raining process is to minimize such loss function , where 𝑀 is the
ize of the training set, 𝑔 are the ground truth labels, and 𝑦 are the
redicted probabilities.

 = 1
𝑀

𝑀
∑

𝑚=1
𝑔𝑚 log(𝑦𝑚)+

− 𝜆
𝑀
∑

𝑔𝑏𝑎𝑔𝑚 log(𝑦𝑏𝑎𝑔𝑚 ) − (1 − 𝑔𝑏𝑎𝑔𝑚 ) log(1 − 𝑦𝑏𝑎𝑔𝑚 )

(7)
𝑀 𝑚=1
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Fig. 2. Residual LSTM block. The input to the residual LSTM blocks are spatial features extracted using cascade of convolutions. The forward and backward LSTM temporal
nformations are concatenated which represents the temporal feature. The temporal features are summed together with spatial input features 𝑥𝑖, after passing through a 1 × 1

convolution to have the same feature dimension with temporal features.
Fig. 3. Temporal attention: Given the spatial and temporal feature as input from our residual LSTM block, the temporal attention block computes the relevance of each frame for
the final video feature representation. Once the attention values 𝛼𝑖 for each frame is computed, the summed weighted features are passed through a fully connected network for
video level prediction.
d
s
e
s
s
s
g
p
f
T
a
(
p
o
d
q

D
s
m
s
e

The first term part of Eq. (7) minimizes video-level prediction loss. Note
that unlike (Sharma et al., 2015; Xu et al., 2015), here the attention
is learned implicitly without any constraint in the loss function. The
second part of the equation represents self-supervision loss which is
a negative log-likelihood based on the Bernoulli distribution. 𝑔𝑏𝑎𝑔𝑚 is
he ground truth label, which is ‘‘1’’ if the bags are the same or ‘‘0’’
therwise. 𝑦𝑏𝑎𝑔𝑚 is the predicted probabilities of the bag.

. Experiment

In this section, we provide an analysis of our proposed PS-DeVCEM
odel and evaluate our temporal attention method. Then we com-
are our model with representative state-of-the-art methods (Ray and
raven, 2005; Andrews et al., 2003; Zhou and Xu, 2007; Bunescu and
ooney, 2007; Ilse et al., 2018; Paul et al., 2018; Nguyen et al., 2018)

nd evaluate them quantitatively for each of the pathologies.

.1. Dataset

This work is joint work with a hospital aimed at medical appli-
ation. The dataset is collected using PillCam COLON I and II VCE
5

evices from 40 patients. PillCam COLON VCE is 11 mm x 31 mm in
ize and it is equipped with two cameras acquiring pictures from both
nds of the capsule with an adaptive frame rate of 4–35 frames per
econd (Mohammed et al., 2018a). The dataset consists of 455 short
egment videos with a total of 28,304 images. We extracted the video
egments using the RAPID reader software (GivenImaging) from the
astroenterologist tagged section of approximately 8-hour video per
atient as shown in Fig. 5. Each training sample consists of 50 to 100
rames with the middle frame thumb-nailed by a gastroenterologist.
he videos are of 512 × 512 resolution. The dataset is labeled by
single doctor and later on verified by a second medical doctor

experienced gastroenterologist). The dataset is unbalanced as some
athologies are more frequent than others. The dataset is representative
f a clinical setting and we kept rare pathologies in the dataset. The
ataset includes 14 classes showing pathological findings and cleansing
uality of the endoscopic procedures, Table 1.

ataset splitting: For proper ablation study and benchmarking, we
plit the dataset into two groups, train/test. Data splitting can be for-
ulated as a statistical sampling problem. There are various statistical

ampling techniques that could be employed to split the data (May
t al., 2010). In our case, we used simple random sampling with 50% of
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Fig. 4. Self-supervision: Frames with high attention values correspond to key frames. Key frames are more likely to contain a given pathology and similar in appearance within
a given video. The positive and negative bags are estimated by clustering the frames based on the attention. The aggregation of positive and negative bag embeddings ℎ𝑖 is used
for training the self-supervision network together with multi-label video classification network.
Fig. 5. Annotation: The top right and left images show the rear and front camera view of PillCam COLON II capsule. Gastroenterologist thumb-nail a given instances of a suspected
pathology with annotation text as shown above. A video with 50 to 100 frames containing such thumb-nailed frame is extracted as a training and test video.
Table 1
Content of PS-DeVCEM dataset: Note that some of the video segments are labeled for multiple pathologies. Each video is labeled by one gastroenterologist and checked by a second
gastroenterologist for quality control. On average, the training and test data has 1.74 and 1.85 labels per video respectively. In the training data number of videos having one,
two, three, four, and five labels are 107, 88, 16, 14, and 2 videos respectively. In the test data videos having one, two, three, four, five, six labels are 98, 89, 21, 17, 2, and 1
respectively.

Pathology Erosions Debris Diverticulosis Erythema Granularity Hemorrhage Inflammation Normal Edema Angioectasia Polyp Pseudopolyp Tumor Ulceration Total

# training videos 54 72 17 16 27 17 22 45 5 1 32 28 8 32 𝟐𝟐𝟕
# testing videos 64 84 16 21 28 20 24 41 7 1 30 29 3 45 𝟐𝟐𝟖
the data for training and 50% for testing. In such a case, we try to make
a train/test set to contain a more or less equal number of pathological
findings and artifacts. The train/test set video are sampled randomly
from all patients to insure the trained model learned to distinguish the
diseases rather than different patients. Table 1 outlines information
about the pathologies and the number of videos in the training and
testing set.
Data augmentation: We randomly flipped the video segments hori-
zontally or vertically and randomly zoom parts of the video segment
to prevent the network from overfitting. We acknowledge that exten-
sive data augmentation techniques (for instance, swapping temporal
order, perspective distortion) will likely lead to improved performance.
However, since the purpose of this evaluation is to benchmark different
methods, we rely on simple data augmentation techniques.
Implementation: Our model is implemented with a Pytorch library
with a single NVIDIA TITAN X GPU. The images are resized into
fixed dimensions with a spatial size of 224 × 224 before feeding the
encoder networks. The encoder network follows the typical architecture
6

of ResNet50 (He et al., 2016), which has been widely used as the
base network in many vision applications. The encoders are shared
and initialized with a pre-trained weight trained on the ImageNet
dataset. The last fully-connected layer of the network was truncated
and the output of average pooling is used for frame representation.
We set the sequence length to 30 frames per video segment with a bi-
directional LSTM hidden-state dimension of 1024. Longer videos are
sampled uniformly to a constant size of 30 frames. For more details,
please refer to Appendix A.
Frame-level inference: The importance of each frame to the final
video level representation is determined by the value of 𝛼 as shown
in Eq. (4). Frames with a high value of 𝛼 indicate where in the video a
given pathology is suspected, hence providing frame-level inference.
Evaluation: We report our experimental results using the PS-DeVCEM
dataset. Following earlier works, Tajbakhsh et al. (2015) and Bernal
et al. (2017), evaluation is done using precision, recall, F1-score, and
sensitivity metrics. Low recall could lead to miss-diagnosis while low

precision could add extra work to the gastroenterologist. Hence, having
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a high performance with a balanced Type I and II error and preferably
lower Type II error would be desirable. In all of our experiments, we
kept the base network to ResNet50 and we examined how our PS-
DeVCEM approach handles challenging cases of video and frame-level
inference.
Ablation study on temporal attention and self-supervision: After
getting visual feedback from a gastroenterologist on temporal attention
accuracy, we performed multiple experiments to improve the accuracy
of the attention block. There are various ways to train the temporal
attention block based on the input feature used. To analyze the impact
of using various input features and the importance of each block
in the proposed framework, we carry out extensive ablation studies
on the PS-DeVCEM dataset. The results are summarized in Table 2.
Table 2 shows multiple experiments on temporal attention block po-
sitioning and training the network. We evaluate the optimal placement
of temporal attention block as follows.
Learning on frame feature (AttenConv): The temporal attention block is
fed with the extracted feature from each frame 𝑥𝑖. The frame repre-
sentation and temporal attention are given in Eq. (8) and (9). Each
convolution feature is weighted with computed value 𝛼𝑛 before feeding
into the LSTM network. The final state of the LSTM (ℎ𝑁 ) is used for
training the neural network. This is equivalent to applying temporal
attention to extracted features and model the temporal information
with LSTM. Therefore, after temporal attention the extracted feature
𝑥𝑛 becomes

̂𝑛 = 𝑥𝑛𝛼𝑛 (8)

where

𝛼𝑛 =
exp{𝒘𝑇 tanh(𝑽 𝒙𝑇𝑘 )}

∑𝑁
𝑛=1 exp{𝒘𝑇 tanh(𝑽 𝒙𝑇𝑘 )}

(9)

Learning on frame feature for LSTM attention (AttenConvLSTM): Another
alternative to AttenConv configuration is to train the attention module
on the input frame feature while weighting the hidden state of LSTM
block with the computed attention weights. Hence, for this configu-
ration, the MIL pooling layer is given by Eq. (3) and the temporal
attention weights are calculated with Eq. (9). In other words, each
frame contribution to the final video-level representation is determined
with extracted feature 𝑥𝑖 without any temporal information.
Learning attention on hidden states of LSTM (AttenLSTM): This is a typical
approach of computing attention with LSTM blocks for human action
recognition (Song et al., 2017; Sharma et al., 2015; Xu et al., 2015)
tasks. In this case, the temporal attention is computed using the hidden
state representation of LSTM ℎ𝑖 and extracted feature 𝑥𝑖. The MIL
pooling layer is given by Eq. (3) with temporal attention weights as
shown in Eq. (4). The difference between this configuration and the
proposed method is, in PS-DeVCEM we use the residual block shown
in Fig. 2 and self-supervision Fig. 4.
Guided AttenLSTM (GuidedLSTM): In this configuration, we extended
our earlier experiment, AttenLSTM by introducing the self-supervision
network that is introduced in Section 3.3. The self-supervision block
is trained to minimize the distance between high and low attention
weighted frame feature representation. The main purpose of this ex-
periment is to examine the efficacy of self-supervision on the overall
accuracy of the method and temporal attention.
Ablation study results: Table 2 lists the results of the four variants
f our framework discussed along with the temporal attention weights
hown in Fig. 6. From the experiments, we note the following points for
mproved trainable MIL pooling layer. First, learning attention weights
rom LSTM hidden state gives a better result compared to convolution
eatures. Although VCE videos are taken with an adaptive frame rate
f 4–35 frames per second, temporal information helps in improv-
ng the overall performance of the networks. Moreover, as shown in
ig. 6, attention weights are not smooth for visually similar neighboring
rames. Secondly, even with temporal information learning attention
rom convolutional features 𝑥 alone performs worse than learning
𝑖

7

Table 2
Ablation study result: The values are averaged for all pathologies. The table shows dif-
ferent ways of computing attention weights and its impact on the overall performance
of video classifiers. With the proposed residual LSTM block and self-supervision, the
final video representation gives better performance.

Method Precision Recall F1-score Specificity

AttenConv 0.229 0.290 0.246 0.872
AttenConvLSTM 0.450 0.461 0.443 0.939
AttenLSTM 0.529 0.478 0.487 0.954
GuidedLSTM 0.487 0.482 0.458 0.946
PS-DeVCEM(proposed) 0.616 0.546 0.551 0.951

attention weights with LSTM hidden states. Thirdly, our method with
residual features and self-supervision gives a better result with 8.7%
and 6.8% improvement in average precision and average recall as
compared to second-best metrics for each metric respectively. It is
important to note that the above experiments are done under the same
experimental setup with different configuration outlined above.

Temporal attention weights are shown in Fig. 6 examine contribu-
tions from each frame to the final video contribution. The attention
weights give important insight into the location of the pathology in the
video. Note that, since the attention weights are normalized, the value
corresponds to the probability of each frame to have a given pathology.
Although GuidedLSTM performs slightly less than AttenLSTM, the at-
tention weights are narrower as they are more discriminative between
positive and negative classes. On the other hand self-supervision with
residual blocks and AttenLSTM attends the correct frames as compared
to other methods. (i.e. few frames on the left and middle of the video
shows polyp).
Comparison with state-of-the-art: In this subsection, we present our
experimental results with classical and recent MIL works using the PS-
DeVCEM dataset. In order to compare with (Ray and Craven, 2005;
Bunescu and Mooney, 2007; Zhou and Xu, 2007), we extracted image
features with ResNet50 architecture for similar representation with
other methods. It is important to note that these methods are proposed
for binary cases. Therefore, we apply the algorithms for each class of
pathologies and solve for binary MIL formulation. We also compare
with deep learning-based approaches (Ilse et al., 2018; Paul et al., 2018;
Nguyen et al., 2018). The feature extraction part of Ilse et al. (2018),
Paul et al. (2018) and Nguyen et al. (2018) is replaced with ResNet50
for uniform feature representation. The loss function in Ilse et al. (2018)
is modified to multi-label classification problem. Table 3 shows that
the proposed method does achieve a state-of-the-art result on the PS-
DeVCEM dataset. All deep learning-based methods (Ilse et al., 2018;
Paul et al., 2018; Nguyen et al., 2018) are trained end-to-end with
ResNet50 as a backbone network for feature extraction. It is important
to note that both Nguyen et al. (2018) and Paul et al. (2018) are
weakly supervised works that are proposed for activity recognition in
a video. For Nguyen et al. (2018) we used a segment size of one and
in Paul et al. (2018) we only used the RGB stream. As in Table 3, it is
clear that the proposed PS-DeVCEM improves F1-score and precision
when using residual LSTM blocks and self-supervision. However, in
special cases where pathology exists throughout the video Fig. 8, our
proposed method underestimates the frame attention weight (i.e. the
video frames are visually similar but the attention values tend to be
different). This is due to the dataset imbalance in the training examples
for each pathology.

Self-supervision: In order to understand how self-supervision loss af-
fect the detection performance, we have included further experiment in
Table 3. As shown in Table 3, self-supervision improves the overall per-
formance of the network by maximizing the distance between positive
and negative feature embeddings. The self-supervision allows frames
with similar feature to have similar attention weights and regularizes
the attention weights to be consistent.
Discussion: By using self-supervision and residual LSTM blocks, we
effectively optimized the performance of the proposed approach. By
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Fig. 6. Example of attention weights for different configurations. The top frames show the sequence of video frames with the corresponding attention in the middle frame. Yellow
bounding boxes on the top frames show frame level annotation. The last row shows gray scale coded image with black the irrelevant frames and white the relevant frames. Attention
frames vary from Blank (Black) to the original frame corresponding to low and high value of attention weights, respectively. The attention images are encoded as (𝐼0.0001+ 1

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ).
he ground truth label for the video is ‘‘Polyps’’ shown in yellow box, with expected attention to the middle and left side of the video. It can be seen that our proposed method
ives smooth attention as well as better localization of suspected frames.(Best viewed in color). (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
Fig. 7. Learning attention: In Fig. 7(a), the video feature is computed by using the weighted sum of features 𝑥𝑖 using the attention weights computed based on the convolutional
feature while in Figs. 7(b) and 7(c) is computed using the output of the residual LSTM block. In Fig. 7(a), we can see that normal frames are confused for bleeding, debris and
diverticulosis as compared to the proposed method. Furthermore, with our proposed self-supervision very similar classes such as ulcerations and erosion are better separated. In
the above figure, Fig. 7(a) represents independent sample based method while Figs. 7(b) and 7(c) represent temporal based MIL formulations as discussed in related work section.
first classifying group of frames into positive and negative classes and
further classifying the frames as a whole into separate categories pro-
gressively, the self-supervision mechanism improves feature discrimina-
tion between similar classes. Compared to metric learning techniques
such as Paul et al. (2018) as shown in Table 3, the proposed method
relies on a weak supervision to improve positive and negative class
feature representations. Alternatively approaches to the self-supervision
mechanism including metric learning and siemese network (Bromley
et al., 1994) variants can be used with the caveat that each video could
8

contain multiple pathologies and some pathologies are more-likely to
occur together than others. Furthermore, since such approach give a
high self-supervision, dataset imbalance and representation learning
need to be taken into consideration. From the confusion matrix plot
in Fig. 7, we can observe that similar classes like debris and erosion,
erosion and ulceration are challenging to visually separate. With the
proposed weak self-supervision, we are able to improve discrimina-
tive feature representation without directly addressing class imbalance
problem. However, we note that the frame-level inference could be
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Fig. 8. Comparison of temporal attention weights. The ground truth label for the video is ‘‘Bleeding’’, in most of the frames. In Ilse et al. (2018), it is assumed that each instance
is permutation-invariant and the attention modules are not able to localize the keyframes. Our approach considers neighboring instances to be similar and therefore gives a smooth
and better localization of the keyframes.
Fig. 9. Performance evaluation on multi-label video classification. The plot shows comparison of state of the art methods with different ways of computing the attention weights.
From precision–recall plot, we can see that W-TALC (Paul et al., 2018) gives a high recall value and small precision score compared to the proposed method. However, low
precision score results in additional work for the gastroenterologist as false positive sample videos need to be reviewed.
Table 3
Comparison with other MIL algorithms: The values are averaged for all pathologies.
Note that STPN (Nguyen et al., 2018), W-TALC (Paul et al., 2018) and Attention based
deep MIL (Ilse et al., 2018) are deep neural network based methods while SIL (Ray
and Craven, 2005) and MissSVM (Zhou and Xu, 2007) are based on SVM classifier.

Method Precision Recall F1-score Specificity

SIL (Ray and Craven, 2005) 0.235 0.046 0.066 0.997
MissSVM (Zhou and Xu, 2007) 0.130 0.162 0.123 0.912
Attention based deep MIL (Ilse et al., 2018) 0.616 0.471 0.513 0.955
STPN (Nguyen et al., 2018) 0.592 0.517 0.536 0.916
W-TALC (Paul et al., 2018) 0.274 0.891 0.416 0.666
PS-DeVCEM (w/o self-supervision) 0.606 0.54 0.54 0.951
PS-DeVCEM (proposed) 0.616 0.546 0.551 0.951

influenced depending on the following points. Firstly, the dataset is col-
lected with a central part of the video tagged for pathologies. This could
influence the learning process in practical settings since it can bias the
learning algorithm to memorize the location of the tagged pathology.
Secondly, the residual LSTM blocks aggregate information temporally
which could miss-align the attention to an incorrect segment of the
video. Higher attention weight could be given to frame location where
the highest temporal information available. One approach to address
the above issues is to collect additional datasets and longer sequences.
However, despite being trained in a purely weakly-supervised manner,
our approach gives the state-of-the-art result for pathology detection.

As shown in Fig. 9, temporal information aggregation using atten-
tion units improves the over all performance of any of methods. How-
ever, the method and input to the attention units affect the performance
video classification task as well as frame localization. Experimental
results as shown in the ablation study indicate that residual LSTM
blocks as input to a two layered neural network attention units give
a better performance compared to alternative approaches.
9

Table A.4
Training configuration for all deep learning based methods when
applicable.

Configuration Description

Input video (Bag) size 30 × 224 × 224 × 3
Batch size 1
ResNet50 output feature size 2048
Number of Hidden Bidirectional LSTM 2
Hidden Bidirectional LSTM size 512
Detection threshold 0.5

5. Conclusion

In this work, we proposed PS-DeVCEM: a pathology-sensitive end-
to-end deep model based on weakly labeled capsule endoscopy data.
We introduced a self-supervision method and residual LSTM blocks for
video and frame-level prediction, further improving the interpretability
of the proposed framework. Furthermore, we developed the first VCE
dataset with video labels aiming at MIL formulation with a total of
455 short-segment videos. Moreover, experimental results on the PS-
DeVCEM database show that the proposed method achieves the best
performance on precision and F1-score metrics. Finally, we believe that
the PS-DeVCEM dataset and the proposed approach will inspire similar
works as the dataset and code will be available with this publication.

As future work, we plan to improve the video frame localiza-
tion through domain knowledge of the pathologies. Moreover, some
pathologies such as inflammations have longer temporal dependencies
and handling longer temporal dependencies can further improve the
performance. Furthermore, we are planning to diversify our dataset
and collect more videos to improve the frame-level localization of
pathologies.
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Listing 1: PS-DeVCEM: Network configuration

ResNet50
AvgPool2d ( k e r n e l _ s i z e =7, s t r i d e =1, padding=0)
( lstm ) : LSTM(2048 , 512 , num_layers =2, b i d i r e c t i o n a l=True )
a t t en t i on :
( 0 ) : L inear ( i n _ f e a t u r e s =1024, o u t _ f e a t u r e s =256, b ias=True )
( 1 ) : Tanh ( )
( 2 ) : L inear ( i n _ f e a t u r e s =256, o u t _ f e a t u r e s =1, b ias=True )
c l a s s i f i e r :
( 0 ) : L inear ( i n _ f e a t u r e s =1024, o u t _ f e a t u r e s =15, b ias=True )
( 1 ) : Sigmoid ( )
b a g c l a s s i f i e r :
( 0 ) : L inear ( i n _ f e a t u r e s =1024, o u t _ f e a t u r e s =1, b ias=True )
( 1 ) : Sigmoid ( )
Table A.5
Optimization procedure details.

Experiment Optimizer Coef. RA 𝛽 Leaning rate Weight decay Epochs Stopping criteria

All Adam 𝛽 = (0.9, 0.999) (0.0001)Cyclic learning rate 0.0001 500 lowest validation error
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Table A.6
MissSVM (Zhou and Xu, 2007) configuration.

Method Kernel Regularization Max-iteration

MissSVM RBF 1 100

Table A.7
SIL (Ray and Craven, 2005) configuration.

Method Kernel Regularization Scale

SIL (Ray and Craven, 2005) Linear 10 False
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